S e s

SOFTWARE ENGINEERING LABORATORY SERIES - SEL-82-004
- / {;

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME |

JULY 1882

NNS,

Saliorar Aerorauthics andag
SOUC A stration

Goddard Space Flight Center

Greenbelt Maryiand 20

SOFTWARE ENGINEERING LABORATORY SERIES SEL-82-004

COLLECTED SOFTWARE
ENGINEERING PAPERS: VOLUME |

JULY 1982

NNS

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt. Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization
sponsored by the National Aeronautics and Space Administra-
tion Goddard Space Flight Center (NASA/GSFC) and created for
the purpose of investigating the effectiveness of software
engineering technologies when applied to the development of
applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)
The University of Maryland (Computer Sciliences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (1) to understand the software de-
velopment process in the GSFC environment; (2) to measure
the effect of various methodologies, tools, and models on
this process; and (3) to identify and then to apply success-
ful development practices. The activities, findings, and
recommendations of the SEL are recorded in the Software En-
gineering Laboratory Series, a continuing series of reports
that includes this document. The papers contained in this

document appeared previously as indicated in each section.

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582.1

NASA/GSFC

Greenbelt, Maryland 20771

ii

TABLE OF CONTENTS

Section 1 - INtroduction. « + « v « o o o o o« o o o o o 1=104+"

Section 2 - The SEL Organization. ¢« « « « « « 2-1

"The Software Engineering Laboratory: Objectives,
V. R. Basili and M. V. Zelkowitz. . . . « « « « . . 2=27/

"Operation of the Software Engineering Laboratory,
V. R. Basili and M. V. Zelkowitz. « « . . 2-16

Section 3 - Resource Models . . ¢ ¢ ¢ « o o o o o o o 3-1

"Resource Estimation for Medium-Scale Software
Projects," M. V. Zelkowitz . . .« « « « « ¢« « « o« o 3-2

"A Meta-Model for Software Development Resource
Expenditures," J. W. Bailey and V. R. Basili. . . . 3-8

"Can the Parr Curve Help With Manpower Distribution and
Resource Estimation Problems?" V. R. Basili and
J. Beane. ¢ ¢ 4 4 ¢ 4 4 4 4 e 4 s e e e s e e o o = 3-18

Section 4 - Software MeasSuUres . . « « « o« o s « o o o 4-1

"Measuring Software Development Characteristics
in the Local Environment," V. R. Basili and
M. V. ZelkoWwitz . . ¢ ¢ ¢ v ¢ o o o o o o o« o o o« » 4-2

"Programming Measurement and Estimation in the
Software Engineering Laboratory," V. R. Basili
and K. Freburger. « « « o« « o o o o o o o o o« o« « o 4-7

"Evaluating and Comparing Software Metrics in the
Software Engineering Laboratory," V. R. Basili and
T. PhilliPS + v o o o o o o o o o « o « o o« « « « « 4-18

Section 5 - Software Engineering Applications 5-1

"Models and Metrics for Software Management and
Engineering,” V. R. Basili. . . « . . . ¢« « ¢« « « « 5-2

"Use of Cluster Analysis To Evaluate Software
Engineering Methodologies," E. Chen and
M., V. ZelkOowWitzZ « v & ¢ & ¢« o o o « o o o o « o« « « 5-14

Bibliography of SEL Literature

SECTION 1 — INTRODUCTION

SECTION 1 - INTRODUCTION

This document is a collection of technical papers produced
by participants in the Software Engineering Laboratory (SEL)
during the 5-year period ending December 31, 198l. The goal
of the document is to make available, in one reference, some
results of SEL research that originally appeared in a number
of different forums. Although these papers cover a wide
range of topics related to software engineering, they do not
completely describe the activites and interests of the SEL.
Additional information about the SEL and its research ef-
forts can be obtained from the sources listed in the bibli-

ography.

For the convenience of this presentation, the 10 papers are

organized into 4 major topics, as follows:

The SEL organization (Section 2)
Resource models (Section 3)

Software measures (Section 4)

Software engineering applications (Section 5)

Although these topics are interrelated, some general dis-
tinctions among them can be made. The first topic discussed
is the organization, objectives, and operation of the SEL
itself. Then some research results in the areas of defining
and evaluating resource models and software measures are
presented. The last section includes discussions of the
application of resource models and software measures to

software management and the evaluation of software technol-
0ogy.

The SEL is still actively working to understand and improve
the software development process at Goddard Space Flight

Center. Future efforts will be documented in additional
volumes of the Collected Software Engineering Papers and in

other SEL publications.

1-1

SECTION 2 — THE SEL ORGANIZATION

SECTION 2 - THE SEL ORGANIZATION

The technical papers included in this section were origi-

nally published as indicated below:

Basili, V. R., and M. V. Zelkowitz, "The Software
Engineering Laboratory: Objectives," Proceedings

of the Fifteenth Annual Conference on Computer Per-

sonnel Research, August 1977 (reprinted by permis-

sion of the authors)

Basili, V. R., and M. V. Zelkowitz, "Operation of
the Software Engineering Laboratory," Proceedings of

the Life Cycle Management Workshop, September 1977

(reprinted by permission of the authors)

2-1

The Software Engineering Laboratory:
Objectives

Victor R. Basili
Marvin V. Zelkowitz
Department of Computer Science
University of Maryland
College Park, Md. 20742

I. INTRODUCTION

A great deal of time and money has been and will continue
to be spent in developing software. Much effort has gone
into the generation of various software development meth-
odologies that are meant to improve both the process and
the product ({MYER, 75], [Bake, 74], [woLv, 72]). unfor-
tunately, it has not always been clear what the under-
lying principles involved in the software development)
process are and what effect the methodologies have; it is
not always clear what constitutes a better product. Thus
progress in finding techniques that produce better,
cheaper software depends on developing new deeper under-
standings of good software and the software development
process through studying the underlying principles
involved in software and the development process. At the
same time we must continue to produce software.

To gain a better knowledge of what is good in .the current
methodologies and what is still needed, and to help under-
stand the underlying principles of the software develop-
ment process, we must analyze current techniques, under-
stand what we are doing right, understand what we are
doing wrong, and understand what we can change.

There are several ways of doing this. One way is to ana-
lyze the development process and the product at various
stages of development. Unfortunately, such analysis is
a tedious process. But it must be performed if we are to
gain any real insight into the problems of software
development and make improvements in the process. We
need to study carefully the effect of various changes 1n
the development process or the product to determine
whether or not a particular methodology has any real
effect, and more importantly, what kind of effect

{[reay, 76], [waLs, 770).

This requires measures of all kinds, quantifiable and
nonquantifiable. Nonquantifiable measures, although sub-
jective, reveal a great deal of information about the
product. We can “see" good design and code that meets
the problem requirements in a clear, understandable,

effective way and is easy to modify and maintain in
unforeseen circumstances. This kind of understanding is
clearly needed, and clearly fruitful; it is accomplished
by reading and understanding the design and code. Unfor-
tunately, these judgements are not easy to quantify.

They require a great deal of time to analyze and measure
each product, or class of products.

A secondary approach is to develop a set of measures

that attempt to quantify these qualitative character-
istics of good software design and development. Al-
though there is currently no mechanical way of eval-
uating design, the development of guantitative measures
that correlate well with subjective judgements of quality
can aid in the understanding and evaluation of the
product and process. For example, the "goodness"” of a
product is related to the time it takes to modify it and
the aspects of its organizational structure that permit
ease of modification and ease of finding and correcting
errors where ease is measured in terms of the time
required, number of places code needs to be changed, etc.
The "goodness” of the development methodology is related
to the "goodness” of the product it produces, e.g., the
number and difficulty of finding errors in the product
it produces.

It is important to understand what characterizes classes
of problems and products, what kinds of problems are
encountered and errors made in the development of a
particular class of products, whether or not a partic-
ular methodology helps in exposing or minimizing the
number or effect of a class of errors, what the relation-
ship is between methodology and management control,
estimating, etc. A better understanding of the factors
that affect the development of software and their inter-
relationships is required in order to gain better in-
sights into the underlying principles. The Software
Engineering Laboratory has been established, in August
1976, at NASA Goddard Space Flight Center in cooperation
with the University of Maryland to promote such under-
standing. The goals of the laboratory are to analyze
the software development process and the software pro-
duced in order to understand the development process,
the software product itself, the effect of various
"improvements” on the process with respect to the method-
ology, and to develop quantitative measures that corre-
late well with intuitive notions of good software.

The next section gives an overview of the research
objectives and experiments being performed at the Labo-
ratory. Section III contains the current list of fac-
tors that affect the software development process or
product and are to be studied or neutralized. The data
collection and data management activities are discussed

2-3

in Section IV. The last section contains information on
the current status and future plans for the Laboratory.
Fuither details of this project can be found in [BASI,
77].

II. ACTIVITIES

It is clear that many kinds of data can be gathered and
analyzed to develop quantitative information about the
software process and the product to which it leads. The
laboratory has limited funding and personnel and for this
reason has limited its scope to studying three very
specific areas related to reliability, management, and
complexity. It is expected that the scope will even-
tually expand as we learn more about the collection of
‘'valid data and what can be done with it. In this section
we discuss the research activities and the two classes of
experiments to be run.

Because error-free software is as yet an unattainable
goal, the reliability study will provide insight into
the nature and causes of software errors. We would like
to classify errors, expose techniques that reduce the
total number or classes of errors, and detect the effect
or lifetime of these errors ([sHoo, 75], [THAY, 76],
[ENDR, 75], [GANN, 75], [AMOR, 73]). We expect to detect
the point at which errors enter the process and the
relative costs of finding and fixing them.

Management of the software development process is as
poorly understood as the technology involved. We believe
that a major effort should be expended on this area. The
management aspect of the Software Engineering Laboratory
involves the analysis of the management process, the
clagssification of projects from a management point of
view and the development of rsasonable management meas-
ures for estimating time, cost, and productivity

([BauM, 63], [TAUS, 76]). We will study the effect of
various factors, such as time, money, size, computer
access, techniques, tools, organization, standards,
milestones, etc. We would like to understand at what
point in the development process, estimates become
reasonably accurate, how one can measure good visibility
and management control and under what conditions certain
methodologies help provide management control.

Lastly, there is a relation between the development
methodology and the product it produces. A good method-
ology should help produce a less complex product than a
"bad" one. We are trying to discover whether the com-
plexity of a software system can be measured by the
structure of the resulting programs ([surLL, 73], [HELL,
72], [VANE, 70]). Do various techniques create a more
systematic structure, one that is easier to read and

2-4

maintain, where data and function are localized with a
minimal amount of interaction between modules? The
relationship between various complexity measures of pro-
gram structure will be examined throughout the develop-
ment process and such measures as error rate, development
time, the accuracy and speed of modification will be cor-
related with these complexity measures.

Two kinds of experiments are being conducted: screening
experiments and controlled experiments. 1In the screening
experiments, we are collecting data on a large assortment
of projects of varying sizes and types. The impact on
the development process is manifested by the requirement
that the developers fill out a set of data collection
forms (see Section IV). The purpose of the screening
experiments is to determine how software is developed now.
We are organizing a data bank of information to classify
projects for future reference and public availability,
analyze what methodologies are being used as opposed to
what methodologies are supposed to be used, demonstrate
how carefully the actual implementation of a method-
ology can be monitored, discover what parameters can be
validly isolated, expose the parameters that appear to be
causing major problems, and discover the appropriate
milestones and techniques that show success under certain
conditions. While the data collected in the screening
experiments may not be complete or totally accurate, it
will provide input for the more strictly monitored
controlled experiments.

The purpose of the controlled experiments is to discover
the effect of various factors on the software develop-
ment process and product in a reasonably controlled
environment. A set of duplicate developments will be
performed and detailed data collected for all of them.

A carefully chosen set of techniques will be taught to
and used by one of the development groups, denoted as the
"impacted" group. We will then analyze the effect of the
introduced factors by comparing the impacted development
process and product in a reasonably controlled environ-
ment.

The experiment must be designed in such a way as to in-
sure that we are testing the real hypothesis, i.e., to
guarantee that we are measuring what we think we are
measuring. It is important that all the contributing
factors be well understood and the factors that we are
not studying be neutralized [CAMP, 66]. Our approach is
first to develop a particular experimental design, ana-
lyze its ability to neutralize potential interfering
factors, (i.e., individual programmer capability) and
perform one experiment. Based on this experience, the
design will be modified and experiments repeated until
we have arrived at a reasonable standard. .

2-5

One current experimental design is to have two groups,
Group 0 and Group 1, each develop a product, A. We will
then impact Group 1 with a set of factors by teaching
them the use of certain development techniques. Both
groups will then develop a second small project B to give
Group 1 some experience with the techniques in an oper-
ating environment. Then both groups will develop product
C, Group 1 using the new approach. This gives us several
points of comparison. We can discover any difference in
personnel by comparing project A for both groups; the two
groups can then be more honestly compared in project C

by factoring out differences from project A. The meas-
ures developed for the areas of interest will be used to
compare the two processes and products.

In a second controlled experiment, several large scale
projects (5 to 10 man years each) are to be carefully
monitored with some of the personnel given a training
course and set methodology to use. Using the notation
above, these will be a set of C projects with no A and B.
While the projects are not identical, they are highly
similar and should yield information about differences
in techniques. In Section V, both of these controlled
experiments will be described in greater detail.

ITI. PFACTORS

There are a large number of factors that affect the soft-
ware development process and software product. Initially,
we are interested in a list of potential factors to
establish the kind of data that needs to be collected.
Next, we are interested in the kinds of factors that we
can reliably measure. From this measurable set of fac-
tors, we would like to isolate those that appear to have
a major impact on the development process and product,
i.e., those whose use or non-use show large variation in
our measures. Finally, when we have a better understand-
ing of the factors affecting the software development
process, we want to quantify them in some way by per-
turbing them to study their effects or neutralizing them
to make sure they are not affecting factors that are
under study.

Our procedure is to start with as complete a list of
factors and categories of factors as possible. We expect
continually to build, iterate, and refine this list
through the activities of the laboratory. The develop-
ment of reporting forms and automated tools have helped
define the list of factors that we can isolate. The
screening experiments will help further isolate those
factors which we can measure and those that appear to

be contributing strongly to the various measures asso-
ciated with errors, cecmplexity of program structure,

2-6

management difficulties, etc. The controlled experi-
ments will be used to demonstrate the effect of the
various factors that have been shown worth isolated
study.

A list of factors is given below, categorized by their
association to the problem, the people, the process,
the product, the resources, and the tools. Some
factors may fit in more than one category but are
listed only once.

A. People Factors: These include all the individuals
involved in the software development process
including managers, analysts, designers, programmers,
librarians, etc. People related factors that can
affect the development process include: number of
people, level of expertise of the individual mem-
bers, organization of the group, previous experi-
ence with the problem, previous experience with
the methodology, previous experience with working
with other members of the group, ability to
communicate, morale of the individuals, and
capability of each individual.

B. Problem Factors: The problem is the application or
task for which a software system is being developed.
Problem related factors include: type of problem
(mathematical, database manipulation, etc.), relative
newness to state of the art requirements, magnitude
of the problem, susceptibility to change, new start
or modification of an existing system, final product
required, e.g., object code, source, documentation,
etc., state of the problem definition, e.g., rough
requirements vs. formal specification, importance
of the problem, and constraints placed on the
solution.

C. Process Factors: The process consists of the partic-
ular methodologies, techniques, and standards used
in each area of the software development. Process
factors include: programming languages, process de-
sign languages ([VANL, 76]), specificaticn languages,
use of librarian ([BAKE, 75)]), walk-throughs ([BAKE,
75]), test plan, code reading, top down design, top
down development (stubs), iterative enhancement
({[(BASI, 76]), chief programmer team ([BAKE, 75]),
Chapin charts, HIPO charts ([STAY, 76]), data flow
diagrams, reporting mechanisms, structured pro-
gramming ({MILL, 72], [DAHL, 72]), HOS techniques
([HAMI, 76]), and milestones.

D. Product Factors: The product of a software develop-
ment effort is the software system itself. Product
factors include: deliverables, size in lines of code,

2=7

* words of memory, etc., efficiency tests, real-time
requirements, correctness, portability, structure
of control, in-line documentation, structure of data,
number of modules, size of modules, connectivity of
modules, target machine architecture, and overlay
sizes.

E. Resource Factors: The resources are the nonhuman
elements allocated and expanded to accomplish the
software development. Resource factors include:
target machine system, development machine system,
development software, deadlines, budget, and response
and turnaround times.

F. Tool Factors: The tools, although also a resource
factor, are listed separately due to the important
impact they have on development. Tools are the
various supportive automated aids used during the
various phases of the development process. Tool
factors include ([REIF, 75], [BOEH, 75], [BROW, 73]):
requirements analyzers (e.g., PSL/PSA [TEIC, 77],
system design analyzers, source code analyzers (e.g..
FACES [RAMA, 74]), database systems (e.g., DOMONIC
[DoMo, 75]), PDL processors, automatic flowcharters,
automated development libraries, implementation
languages, analysis facilities, testing tools
([rRaMA, 75], [MILL, 75]), and maintenance tools.

IV. Data Collection

Data collection occurs as four components - reporting
forms, interviews, automatic collection of data by
computer, and use of automated data analysis routines.

A. Forms: There are seven forms that were defined to
obtain information on the factors given in Section
III. These forms are filled out by various members
of the project development team and are used to
gather information at various states of the develop-
ment process. They reveal the resource estimates
at inception, the overall layout of the system, the
updating of the estimates and the achievement of
milestones, the time spent in various activities,
the expenditures of resources, and an audit of all
changes to the system. Several redundancy checks
have been included to validate the accuracy of the
information obtained.

Briefly, the seven forms are as follows (See
Appendix 2 of [BASI, 77]):

1. The General Project Summary - This form is used

to classify the project and will be used in con-
junction with the other reporting forms to

2-8

measure the estimated versus actual development
progress. It is filled out by the project man-
ager at the beginning of the project, at each
major milestone, and at the end. The final
report should accurately describe the system
development life cycle.

The Programmer/Analyst Survey - This form is to
classify the background of the personnel on each
project. It is filled out once at the start of
the project by all personnel.

The Component Summary - This form is used to keep
track of the components of a system. A component
is a piece of the system identified by name or
common function (e.g., an entry in a tree chart
or baseline diagram for the system at any point
in time, or a shared section of data such as a
COMMON block). With the information on this form
combined with the information on the Component
Status Report, the structure and status of the
system and its development can be monitored. This
form is filled out for each component at the time
that the component is defined, at the time it is
completed, and at any point in time when a major
modification is made. It is filled out by the
person responsible for that component.

The Component Status Report - This form is used
to keep track of the development of each compo-
nent in the system. The form is turned in at

the end of each week and for each component lists
the number of hours spent on it. This form is
filled out by persons working on the project.

The Resource Summary - This form keeps track of
the project costs on a weekly basis. It is
filled out by the project manager every week of
the project duration. It should correlate
closely with the component status report.

Change Report - The change report form is filled
out every time the system changes because of
change or error in design, code, specifications
or requirements. The form identifies the error,
its cause and other facets of the project that
are affected.

Computer Program Run Analysis - This form is used
to monitor the computer activities used in the
project. An entry is made every time the com-
puter is used by the person initiating the run.

2-9

.Interviews: Interviews are used to validate the

accuracy of the forms and to supplement the infor-
mation contained on them in areas where it is
impossible to expect reasonably accurate infor-
mation in a form format. In the first case spot
check interviews are conducted with individuals
filling out the forms to check that they have
given correct information as interpreted by an
independent observer. This would include agree-
ment about such things as the cause of an error
or at what point in the development process the
error was caused or detected.

In the second case, interviews will be held to
gather information in depth on several management
decisions, e.g., why a particular personnel
organization was chosen, why a particular set of
people was picked, etc. These are the kinds of
questions that often require discussion rather
than a simple answer on a form.

Automatic Data Collection: The easiest and most
accurate way to gather information is through an
automated system. Throughout the history of the
project, more and more emphasis will be placed
on the automatic collection of data as we become
more aware what data we want to collect, i.e.,
what data is the most valuable and what data we
can or need to get, etc. More energy will be
expended in the development or procurement of
automatic collection tools as the laboratory
cbntinues.

ree da"-ina ig

The most bagic information gath avice is

basic information gathering
the program development library. The librarian
will automatically record data and alleviate the
clerical burden from the manager and the pro-
grammers. Copies of the current state of affairs
of the development library will be periodically
archived to preserve the history of the devel-
oping product.

A second technique for gathering data auto-
matically is to analyze the product itself,
gathering information about its structure using
a program analyzer system. A set of modifica-
tions to the FACES system is currently underway
and will progress as the laboratory gains

more experience. These modifications are geared
at getting more of the kind of information about
the product required for our measures.

Database analysis: The above data collected on

2-10

the project will be stored in a computerized
database. Data analysis routines are being
written to collect derived data from the raw
data in the database. The data that is being
collected is being processed by a PDPll-based
system. For ease of implementation, it utilizes
the INGRES relational database system [HELD, 75]
which runs under the UNIX operating system.

V. Current Status

Beginning in November, 1976, most new software tasks

that were assigned by the Systems Development Section of
NASA/GSFC were given the added responsibility of £filling
out the forms, and thus entered our set of screening
experiments. At the present time, about a dozen projects
are currently involved. These projects are mostly ground
support routines to various spacecraft projects. This
consists of attitude orbit determinations, telemetry
decommutation and other control functions. The software
that is produced generally takes from six months to two
years to produce, is written by three to six programmers
most of whom are working on several such projects simul-
taneously, and consists of six man-months to ten man-
years of effort. Projects are managed by NASA/GSFC
employees and the personnel are either NASA personnel or
outside contractors.

In June of 1977, the first of the controlled experi-
ments began. Two teams (0 and 1) are assigned tasks to
be designed and developed for delivery to the Systems
Development Section. The format of these tasks satisfy
the experimental design outlined in Section II.

i.e., Ao XBO Co

Al YBl Cl
where Ai, Bi' and Ci' represent tasks to be developed
by team i and X and Y are training sessions. These
tasks will be developed on the PDP-11/70 at NASA/GSFC.
One team will consist of in-house NASA/GSFC personnel
while the other will consist of contractor personnel.
The tasks will consist of five separate subtasks with
two comprising project 'A', one project 'B', and two
comprising project 'C'. All subtasks require somewhere
on the order of three man-months of effort.

Team 1 will be given a training session (Y) after com-
pleting the A projects, consisting of several techniques:
PDL, Structured Programming, Walk-throughs, use of
Librarians, Code Reading, and will also be given a small
project B to take into account the necessary learning

2-11

curve before Project C is undertaken. Team 0 will also
be given a training session and a B project, but will
not be-taught the above techniques.

For this first controlled experiment, there is complete
control of the development process. The A projects
enable us to determine the background of the personnel
and the C projects enable us to determine the effects of
the training sessions. The small B task enables us to
filter out much of the learning curve involved in
learning new techniques. Due to cost considerations,
the duplicate developments must necessarily be kept
small; however, the projects are large enough to require
team interaction among the programmers and therefore we
believe that they are generalizable to larger projects.
In addition, the techniques taught in the Y training
session are those most applicable to team situations.

A second, longer range, controlled experiment was begun

in March, 1977. 1In this case, several similar large
scale projects are being carefully monitored. These proj-
ects can be summarized by the following table:

Project Man Years Techniques Used
1 6 ‘ NONE .
2 4% Structured code, Librarian,
code reading
3 4% Training session Y of
) experiment 1 -
4 6 Not yet defined

In this case we are performing C-like experiments of con-
trclled task 1. Due to budgetary restrictions, it is

not possible to duplicate the development of each, how-
ever, the tasks are highly similar and should give us
results similar to the strictly monitored controlled
task 1. While we realize that we have less control over
this experiment, this controlled experiment allows us to
study larger projects. By varying the methodology, we
expect to observe differences in project progress.

-The next stop will be to define controlled experiment 3,
based upon the preliminary results of experiments 1 and
2. It is expected that controlled experiment 3 will
begin in early 1978. In this case, the techniques taught
in training sessions X and Y and used in C, may be
changed to reflect the new technigques to be measured.

It is expected that as this process continues over sev-
eral iterations, quantitative data on various products
and development processes will result.

2-12

ACKNOWLEDGMENTS

The development of this laboratory has involved the
efforts of many people, including Robert W. Reiter,
David L. Weiss, Howard J. Larsen, Charles L. Wolf,
Frank McGarry, Richard des Jardins, Walter Truszkowski,
Robert Nelson, and Keiji Tasaki.

REFERENCES

[AMOR, 73] Amory, W., J. A. Clapp, A Software Error
Classification Methodology, MTR 2648, Vol.
VII, The Mitre Corporation, June, 1973.

[BAKE, 75] Baker, F. T., Structured Programming in a
Production Programming Environment. Inter-
national Conference on Reliable Software,
Los Angeles, April, 1975, (Sigplan Notices
10, 6, June 1, 1975, pp. 172-183).

{BasI, 75] Basili, V. R., A. J. Turner, Iterative en-
hancement: a practical technique for soft-
ware development, IEEE Transactions on Soft-
ware Engineering, I, No. 4, December, 1975,
pp. 390-396.

[BasI, 77] Basili, Victor R., Zelkowitz, Marvin J.,
et al., The Software Engineering Laboratory,
University of Maryland Computer Science
Technical Report, TR-535, May, 1977, 104
pages.

[BAUM, 63] Baumgartner, J. S., Project Management,
Richard D. Irwin, Inc., 1963.

[BOEH, 75] Boehm, B. W., R. K. McClean, D. B. Urfrig,
Some Experience Aids to the Design of Large
Scale Reliable Software, IEEE Transactions
on Software Engineering 1, No. 1, March, 1975,
pp. 125-133.

[BrROW, 73] Brown, J. R., A. J. De Salvia, D. E. Heine,
J. G. Purdy, Automated software assurance,
Program Test Methods, Prentice Hall, 1973,
pp. 181-203.

[campP, 66] campbell, D. T., J. C. Stanley, Experimental
and guasi-experimental designs for research,
Chicago, Rand McNally Publishing Co., 1966.

[DAHL, 72] Dpahl, O., E. Dijkstra, C. A. R. Hoare, ,
Structured Programming, New York, Academic
Press, 1972.

2-13

[pomo,

‘ (ENDR,

[GANN,

{HAMI,

[HELD,

(HELL,

[MILL,

(MILL,

[MYER,

[rama,

[raME,

{REIF,

75j

75]

75]

76]

75]

72]

72]

75]

75]

74]

75]

751

Domonic User Guide, Advanced Technology Group,
Data Processing Center, Texas A&M University,
1975.

Endres, A. B., An Analysis of Errors and
Their Causes in System Programs, IEEE Trans-
actions on Software Engineering 1, No. 2,
June, 1975, pp. 140-149.

Gannon, J. D., J. J. Horning, Language

Design for Programming Reliability, IEEE
Transactions on Software Engineering 1, No. 2,
June, 1975, pp. 179-191.

Hamilton, M., S. Zeldin, Higher Order Soft-
ware - A Methodology for Defining Software,
IEEE Transactions on Software Engineering 2,
No. 1, March, 1976, pp. 9-32.

Held, G., M. Stonebraker, E. Wong, INGRES -
A relational data base system, National Com-
puter Conference, 1975, pp. 409-416.

Hellerman, L., A Measure of Computational
Work, IEEE Transactions on Computers 21, No.5
1972, pp. 439-44s%.

Mills, H. D., Mathematical Foundations for
Structured Programming, FSC 72-6012, IBM
Corporation, Gaithersburg, Maryland 20760,
February, 1972.

Miller, E. F., Jr., Methodology for Compre-
hensive Software Testing, Interim Report,
Rome Air Development Center, RADC-TR-75-161,
June, 1975, AD# A013111.

Myers, G., Software Reliability Through Com-
posite Design, New York, Mason Charter, 1975.

Ramamoorthy, C. V., S. F. Ho, FORTRAN auto-
matic code evaluation system (FACES), part I.
Memorandum No. ERL-M-466, Electronics Re-
search Laboratory, University of California,
Berkeley, August, 1974.

Ramamoorthy, C. V., S. B. F. Ho, Testing
Large Software with Automated Software Eval-
uation Systems, IEEE Transactions on Software
1, No. 1, March, 1975, pp. 46-58.

Reifer, D. J., "Automated Aids for Reliable
Software,"” An Invited Tutorial at the 1975
International Conference on Reliable Software,
21-23 April 1975.

2-14

[sHOO,

[sTAY,

[SULL,

{Taus,

[TEI1C,

(THAY,

75)

76]

73]

76]

77]

76]

70]

~3
cn
[

77]

72]

Shooman, M. L., M. I. Bolsky, "Types, Distri-
bution, and Test and Correction Times for
Programming Errors," Proceedings 1975 Con-
ference on Reliable Software, April 2I-23,
1975, pp. 347-362.

Stay, J. P., HIPO and integrated program
design, IBM Systems Journal 15, No. 2, 1976,
pp. 143-154.

Sullivan, J. E., Measuring the complexity of.
computer software, Mitre Corp. Report MTR~
2648, Vol. Vv, June, 1973.

Tausworthe, R. C., Standard Development of
Computer Software, Part 1 Methods, Jet Pro-
pulsion Lab, Calif. Inst. of Technology,
Pasadena, Calif., July, 1976.

Teichroew, D., E. Hershy, PSL/PSA: A Computer-
aided Technique for Structured Documentation
and Analysis of Information Processing Sys-~
tems, IEEE Transactions Software Engineering
3, No. 1, January, 1977, pp. 41-48.

Thayer, T. et al., Software reliability study,
TRW Defense and Space Systems Group, National
Technical Information Services AD-A030-798,
August, 1976.

Van Emden, M. H., The hierarchial decomposi-
tion of complexity, Machine Intelligence 5,
1970, pp. 361-380.

van Leer, P., Top-down development using a
program design language, IBM Systems Journal
15, No. 2, 1976, pp. 155-170.

Walston, C. E., C. P. Felix, A method of pro-
gramming measurment and estimation, IBM
Systems Journal, No. 1, 1977, pp. 54-73.

Wolverton, R. W., The Cost of Developing
Large Scale Software, TRW Software Series
TRW-SS-73-01, March, 1972.

Research supported in part by grant NSG-5123 from the
National Aeronautics and Space Administration to the
University of Maryland.

2-15

[CTO RSP TNV W - A A SO

Lo § S

7 TOILATTE r’,;’}
oyt (S &

OPERATION OF THE SOFTWARE ENGINEERING LABORATORY*

Victor R. Basili and Marvin V. Zelkowitz

Department of Computer Science
University of Maryland

College Park,

Abstract

The paper discusses the current status of the
Software Engineering Laboratory. Data 1s being
collected and processed during the development of
several NASA/Goddard Space Flight Center ground - _
support projects. The data is used to evaluate
software development disciplines and various

models and measures of the software development
process. Emphasis is placed upon models of re-
source estimation, the analysis of error and

change data, and program complexity measures.

The Software Engineering Laboratory is a research
project between NASA/Goddard Space Flight Center
and the Department of Computer Science of the
University of Maryland. Ground support software,
in the six to twelve man-year range, developed for
the Systems Development Section of NASA, is studied
in detail for determining the dynamics of software
development and the effects of various features

and methodologies on this development [Basili and
Zelkowitz 77]. Most data is collected in a set of
reporting forms that are either filled out period-
ically by all project personnel (e.g., a weekly
Component Status report) or whenever certain events
occur (e.g., a Change Report Form when an error is
corrected). This report describes the activities
of the laboratory for the last twelve months.

The initial goal of the Software Engineering Lab-
oratory was the collection of valid data and the
entering of this data into a computerized data
base. During the last twelve months, this process
has been implemented and the analysis of the data
has begun. This report will be divided into four
sections briefly outlining each of the major ac-
tivities undertaken by the laboratory: (1) Data
Collection Activities, (2) Resource Estimationm,
(3) Error Analysis, and (4) Program Complexity.

Data Collection Activities

The first task of the laboratory was to implement

a data base that accurately reflected software de-
velopment. The INGRES data base system operating

under the UNIX operating system on a PDP 11/45

*Research supported in part by grant NSG-5123 from
NASA/Goddard Space Flight Center to the
University of Maryland.

N

Maryland 20742

computer at the University of Maryland was chosen
as the basic data base system [Stonebraker 76].
This activity resulted in the following steps:

A generalized table-driven program was implemented
that converted the raw typed-in forms to a format
acceptable to INGRES. However, it soon became
apparent that the major problems were not program
oriented, but were in the human communication
necessary to carry out this activity.

Forms were frequently filled out containing names
not yet recognized by the data base. Other fields
were sometimes missing or unclear. Constant inter-
action between the University personnel and the
programmers filling out the forms became necessary
in order to solve this problem.

Thus, the first change in procedure was to rewrite
the data validation program for the PDP 11/70 at
NASA. Forms are turned in to a single individual
assigned to the Laboratory. The form is scanned
manually and any errors are brought to the atten-
tion of the programmers. The validation program
finds additional errors that can be quickly cor-
rected. Correct forms are written to tape for
transmittal to the University.

rn

This activity led to a second task--~a tevisicn o
the forms. We observed that the programmers pre-
ferred a "checklist" format rather than a set of
"£4i11 in the blanks," even if more checks were
needed than blanks. Many of the early forms were
studied for typical responses and the forms were
modified appropriately. In addition, some seem-~
ingly useful information, but based upon data that
was generally not being given by the programmers,
has been deleted in order to lessen the apparent
overhead perceived by the programmers partici-
pating in the laboratory.

Another activity now under way is the movement of
the data base to the PDP 11/70 _at NASA. Due to
the smaller size of the PDP 11/45 at the Univer-
sity and the relative inefficiency of INGRES for
large-scale applications, operation of the Uni-
versity setup is starting to become cumbersome.
The PDP 11/70 should eliminate that problem,

Summarizing the activities of the past year, sev-
eral schemes were developed and we now have
evolved a semi-automatic process for entering
data into a data base:

&

1. Forms are turned in and manually scanned for
errors.

2. The forms are entered into a validation pro-
gram at NASA. If errors are present, the form is
returned for corrections. If correct, it is
written to tape.

3., The tape of correct forms is brought to the
University for data base entry.

(By January 1979, it is expected that the corrected
tape will also be entered into a data base on
NASA's PDP 11, At that time the decision will be
made as to whether to keep the University data
base or to interface with NASA's.)

Resource Estimation

One early research activity was the investigation
of resource utilization. The Rayleigh curve has
been studied for larger projects and the applica-
bility of this theory in the smaller NASA environ-
ment was investigated.

Cumulative costs for large-scale software develop-
ment has been shown to approximate the curve

K(-e 2 t) where K is the total project

cost and t is the elapsed time since project in-
{tialization [Putnam 76}. This is usually repre-
sented in 1its differential form called a Rayleigh

curve: (2 Kate ™3 ¢ 2), and represents the
rate of consuming resources. This curve looks
somewhat like a normal distribution with a more ex-
tended tail (see Figure 2).

In our NASA environment, from the general project
summary form, these numbers are obtained:

1. Ke, total estimated cost of the project in
hours of effort. Counting overhead items, like
‘typing support and librarians, total costs (K) are
usually 112% of Ke,

2. Yd the maximal effort per week. From this,
’ 2

constant a can be developed, a = (1/2yd).
3. T the estimated date of acceptance testing.
s
In NASA's environment this usually occurs after

88% of total expenses are consumed.

Since the Rayleigh curve has two parameters (K and
a) and the general project summary gives three
(ie, Y4 and t_), the applicability of the Ray-
leigh clrve to this environment can be checked by
using two of these estimates to predict the third.

Figure 1 represents this analysis for two projects.
Figure l.A presents the estimated data from the
general project summary. In Figure 1.B, t was
estimated from K and y, and y, was estimated
f.om K and t_. Finall&ﬁ Figurg 1.C presents the
actual data.

IFigure 2 plots some of this for these two projects.
While Figure 1 shows that K and y, are accurate
predictors of t (e.g., an EstimatE of 60 weeks
for project A, only a two-week error from the
actual 62 weeks, and a much better estimate than
the initial estimate of 46 weeks), the plots of

2-17

this curve differ from actual resource consumption.
The conclusion seems to be that the Rayleigh curve
is only a crude approximation to reasonable con-
sumption. (See [Basili and Zelkowitz 78a) for more
details.)

In order to test this further, several other
curves were correlated with the actual data (para-
bola, trapezoid and straight line) [Mapp 78]. all
had as good correlations to the data as the Ray-
leigh curve. Thus, the Rayleigh curve was no
better, and in many cases worse, than other
estimates.

In addition, Norden's original assumptions involve
a linear growth in the rate of understanding a
project [Norden 70]. In reality, this learning
curve slows as personnel become familiar with a
project. Based upon this assumption, [Parr 78]
has developed a curve based upon the hyperbolic
secant that may be more applicable in the NASA
environment. This and other theories related to
the Rayleigh curve are now being studied.

The evaluation performed in [Basili and Zelkowitz
78a] has led to a set of procedures that can be
used to monitor project development in a produc-
tion environment. While the full set of seven
reporting forms may prove to be too much over-
head, a set of procedures using only three forms
can be used to monitor project progress with
reasonable accuracy [Basili and Zelkowitz 78b]:
the General Project Summary, submitted at each
project milestone; the Resource Summary, giving
hours worked by all project personnel by week; and
the Change Report Form giving all changes to the
system.

Error Analysis

The principal motivations for studying errors and
changes have been to discover the effects of
various factors on the number and kinds of errors
made in system developments, and to find ways to
evaluate proposed software development methodolo-
gies.

To study this, a number of tasks have been per-
formed. First, to assure that all of the forms
have been filled out in a consistent manner, a
glossary of terms has been defined and made avail-
able to the participants of the monitored software
development process. Second, a set of questions
of interest were defined which were used to mo-~
tivate both the form content and organize the
kinds of data required in the form of interviews
with the participants. Questions of interest
include the following:

What are good ways of characterizing error-
proneness of software development? Measures such
as the total number of errors, errors per line of
code, errors per man hour, errors per component
type where type refers to the kind of sub-applica-
tion or level of complexity, number of fixes per
project phase per component are being considered.
We are also looking at relationships between the
various types of error classification.

oS AT

Rt

E Ny

T T R

T T

S

What are the major sources of errors? One possible
characterization is by analyzing whether errors
are traceable back to requirements, specification,
interface definition or intra-component design, or
clerical activities or the hardware environment.

What are appropriate ways of measuring ease of
software change? Data is being collected on effort
per change in terms of time, the number of fixes
required for the change, and the number of

errors generated by the change.

wnat is the effect of continual change on a soft-
ware product? Data is gathered on the cost of
change as a function of time and cumulative
changes.

What type of changes cause most of the errors?
This may be very environment dependent or it may
give some insights into improved organizations
and methodologies for software development.

What is the effect of personnel organization on
errors? Data is heing collected on correctness
as measured by errors per number of people work-
ing on a piece of software. Again, this should
shed some insights on the way to organize tasks
within a given environment.

What types of changes predominate during software
development? Knowing this should aid in design-
ing software to anticipate the possible changes.

hat are the most prevalent error detection and
correction techniques? Knowing what is used
most often and what works and at what cost will
help in determining what should be used for what
classes of errors in what environment.

What is the effect of various constraints, such as
time and memory on error distributions? Under-
standing this will permit better evaluation of the
tradeoffs in software management.

These are but some of the types of questions the
error analysis phases of the Software Engineering
Laboratory is studying. The data for most of
these questions is gathered from the Change Report
Form, with additional information from the other
forms and follow-up interviews to validate the
accuracy of the information and gather additional
data not easily collected in a form format.

Based upon the above questions, several "first
order metrics' have been defined and software has
been developed to gather information from the
data base. Data 1s being gathered at a slow pace
partly because of the current backlog of Change
Report Forms which have not yet been entered into
the data base, and partly because of the refine-
ment of the form as mentioned in the section on
Data Collection Activities. Early analyses on a
couple of projects, however, do indicate that the
distribution of errors during development appears
to approximate the Rayleigh curve as found by
[Schick and Wolverton 78].

Continued effort will deal with the gathering of

-

information to answer the basic questions of inter-
est, further development of new questions of in-

terest, and possible "second order metrics" based
on the intuition gathered from the current studies.

Program Complexity

There is much interest in measures of complexity
of the software product, the valid aspects of the
product that effect human understanding. There {is
an interest in quantitatively measuring these
aspects so that characteristics of programs that
make them more or less error prone, harder to
modify, or more difficult to develop can be better
understood and recognized. Measures proposed in
the literature may even be used to characterize
differences in the development process.

Work has been done at the University of Maryland
to analyze and compare the development of soft-
ware in an experimental environment to determine
the effects of development methodologies [Basili
and Reiter 78]. The experiment involved the use
of three different types of development: Single
individuals using ad hoc techniques, groups of
three using ad hoc techniques, and groups of three
using a structured programming methodology. Re-
sults have shown that there is some distinction
in the product using very rough measures of the
program characteristics, such as number of if
statements, number of globals, etc. Based on this
study, the organized group lies somewhere between
the ad hoc group and the single individual. How-
ever, with regard to process measures, the
organized group has shown less computer runs in
all phases of development and less errors (using
a measure of errors called program changes which
is algorithmically computable based on different
versions of the software product [Dunsmore 78]).

It is planned to implement the promising measures
from this research on programs from the NASA en-
vironment. Versions of the systems developed at
NASA have been saved and will be compared for
program changes and checked against the tesult
from the Error Report in the Change Report Forums.
Further work is being done in automating and com-
paring various complexity measures. These include
several of our own measures (prime program
hierarchy, data bindings, etc.) as well as some
of the measures that have appeared in the litera-
ture [Halstead 77; McCabe 76].

References

{Basili and Zelkowitz 78a] Basili, V. and
M. Zelkowitz, Analyzing Medium-Scale Software
Development, Third International Conference on
Software Engineering, Atlanta, Georgia, May 1978,
pp. 116-123.

{Basili and Zelkowitz 78b] Basili, V. and
M. Zelkowitz, Measuring Software Development
Characteristics in the Local Environment, Jeurnal
of Computers and Structures, 1978, 5 pp. (to
appear). :

[Basili and Zelkowitz 77] Basili, V. and PROJECT PROJECT

M. Zelkowitz, The Software Engineering Labora- A B
tory: Objectives, ACM SIGCPR Annual Conference, A. Initial Estimates from
Washington, D. C., August 1977, pp. 256-269. General Project Summary

[Basili and Reiter 78] Basili, V. and Reiter, R. Ka, Resources needed (hrs) 14,213 12,997
An Pxperimental Comparison of Software Develop- Ta, Time to completion (wks) 46 41
ment Approaches, University of Maryland, Computer Yd, Maximum resources/wk (hrs) 350 320

Science Technical Report TR-688, August 1978.
B. Completion Estimates Using

[Dunsmore 77] Dunsmore, H. E. and Gannon, J. D., Rayleigh Curve

Experimental Investigation of Programming Com-

plexity, Proceedings of the 16th Annual Tech- K, Resources needed (hrs) 16,151 14,770

nical Symposium: Systems and Software Est. Yd with Ta fixed (hrs) 440 456

Washington, D. C. (June 77) pp. 117-125. Est. Ta with Yd fixed (hrs) 58 58
[Halstead 77] Halstead, M., Elements of Software . €. Actual Project Data

Science, Elsevier Computer Science Library 77.

K, Resources needed (hrs) 17,741 16,543

{McCabe 76] McCabe, Thomas J., A Complexity Yd, Maximum resources (hrs) 371 462

Measure, Transactions on Software Engineering, Ta, Completion time (wks) 62 54

Dec. 76, Vol. SE-2, No. 4, pp. 308-320.
Ta, Estimated using actual

[Mapp] Mapp, T., Applicability of the Rayleigh values of K and Yd (wks) 60 43

Curve to the SEL Environment, University of i . .
Maryland, Department of Computer Science, Flgure‘lz Estimating Ta and Yd from General
Scholarly Paper, May 1978. Project Summary Data

[Norden 70] Norden, P., Use Tools for Project
Management, Management of Production, M. K. ,
Starr (ed), Penguin Books, Baltimore, Maryland, : RAAREL
1970, pp. 71-101. : . .

[Parr 78] Parr, F., An Alternative to the Rayleigh
Curve Model for Software Development Effort
(submitted for publication).

{Putnam 76] Putnam, L., A Macro-estimating
Methodology for Software Development, I[EEE
Computer Society Compcon, Washington, D. C.,
September 1976, pp. 138-143.

{Schick and Wolverton 78] Schick, George J. and
Wolverton, Ray W., An Analysis of Competing
Software Reliability Models, IEEE Transactions
on Software Engineering, Vol. SE-4, No, 2, i
March 1978, pp. 104~120. e e v e

esas csee

{Stonebraker 76] Stonebraker, M., E. Wong and
P. Kreps, The Design and Implementation of
INGRES, ACM Transactions on Data Base Systems 1,

No. 3, 1976, pp. 189-222. * - Estimating curve with Yd (maximum resources) fixed
+ - Estimating-curve with Ta (completion date) fixed
. = Actual data

Figure 2. Estimated resource expenditures curve

2-19

|
l

SECTION 3 — RESOURCE MODELS

onis7

SECTION 3 - RESOURCE MODELS

The technical papers included in this section were origi-

nally published as indicated below:

Zelkowitz, M. V., "Resource Estimation for Medium-
Scale Software Projects,"” Proceedings of the Twelfth
Conference on the Interface of Statistics and Com-
puter Science, New York: Computer Societies Press,
1979, copyright 1979 IEEE (reprinted by permission
of the publisher)

Bailey, J. W., and V. R. Basili, "A Meta-Model for
Software Development Resource Expenditures," Pro-
ceedings of the Fifth International Conference on
Software Engineering, New York: Computer Societies
Press, 1981, copyright 1981 IEEE (reprinted by per-
mission of the publisher)

Basili, V. R., and J. Beane, "Can the Parr Curve
Help With Manpower Distribution and Resource Estima-
tion Problems?,” Journal of Systems and Software,
February 1981, vol. 2, no. 1, copyright 1981
Elsevier-North Holland (reprinted by permission of
the publisher)

3-1

g

D36/

Sg0 19

g

RESOURCE ESTIMATIOM FOR MEDIUM-SCALE SOFTWARE PRNJECTS®

Marvin V.,

lelkowitz+

Department of Computer Science
University of Maryland
College Park, Maryland 20742

The ability to forecast accurately costs and
development times for software development
projects is an important management tool, A
theory for such estimation on large scale
developments has been proposed by Norden and
refined by Putnam, and is based upon a stat-
istical model which yields a Rayleigh curve
as the best estimate of software costs and

times.

The Software Engineering Laboratory has been
established at the University of Maryland

and NASA Goddard Space Flight Center for
studying the mechanics of medium-~scale develop-
ment, This paper will describe the Laboratory,
and will explain some of the research that is
investigating the Norden-Putnam model in the

NASA environment.

The ability to accurately forecast the
resource needs in developing software is an
important management criteria.
Underestimating those needs could lead to
late product delivery or even to project
failure. Overestimating those needs can
lead to wasted resources with no quarantee
that the project can be completed in less
time, as compensation.

This report will be divided into three

sections. Part 1 will be a general
description of vresource estimation for
software development. In Part 2, a
particular methodology, based wupon the
research of Norden and Putnam will be
described. Finally, Part 3 will describe

the Software Engineering Laboratory of the
University of Maryland, and will describe
some of the research relevant to the issues
of resource estimation.

1.0 RESOURCE ESTIMATION

Management of a software development
typically has 2 major resources to control
- people and computer usage. Controlling
the personnel will usually regulate the use

e R et e T O NS U AU ol VN

* - Research supported in part by
grant NSG-5123 from NASA Goddard Space
Flight Center to the University of
Maryland.

+ - Also with the Institute for
Computer Sciences and Technoiogy, National
Bureau of Standards, Washington, DC. 20234

3-2

PERSONNEL

of the computer. Thus resource estimation
typically reduces to controlling the number
of people assigned to a given project.. The
problem is to define a way to control (or
estimate) this size.

Assume via some method (to be
described later) that a project will
require 96 man-months of effort. The
manpower loading curve of Figure 1 will be
a typical description of this effort.
However, this figure leads to the
conclusion that Figures 2 and 3 are equally
valid. However, we know that this is not
the case. Personnel cannot be traded for
months [Brooks75], and resource estimation
consists of more than simply deciding
whether to have more personnel with an
earlier delivery date or fewer personnel
with a later delivery date.

2 4 6 8
YEARS

Figure 1. Typical Resource Usage

PERSONNEL

PERSONNEL

Before describing a general theory of
resource estimation, a general estimation
methodology will be described. How does
one estimate resources for software? In
order to answer this, other engineering

fields can be looked at as models of the
process.

Engineers have developed a
standard approach towards
estimation {Gallagher65]. One
approach includes the following steps:

relatively
resource
such

_1. Develop an outline of the
requirements.
2. Gather similar information, such

as data from similar projects.
3. Select the basic relevant data.
4. Develop estimates. '
5. Do final evaluation.

In order to develop these -estimates
(step 4), the steps to be followed
includes:

4(a). Compare the project to previous
similar projects.

4(b). Divide the project into units,
anq compare each unit with other similar
units.

4(c). Schedule work by month, and
estimate resources by month,

- 4(d). Develop standards that can be

applied to work.

2 8 6
YEARS

Figure 2. Assumed Resource Usage

2 4 6
YEARS

Tizure 3. Assumed hesource Jsage (cont.}

S 3=3

How are estimates generally made?
Three techniques are generally used:
(1) Expert judgment An educated

"guess" by the chief designers.

{2) Algorithmic analysis Use of an
explicit algorithm, if known.
{3) Top down To divide ¢the project

into units 1n a hierarchical manner.

In the software field, we have trouble
at almost every step in the process. What
do we mean by requirements? At a recent
Computer Society conference entitled
Specifications of Reliable Software
[{SRS79}, there was no firm agreement as to
how a requirement or specification should
be described. We do not have any concept
like the engineering blueprint to apply to
developments (although the term has
certainly been used).

We also have little background data to
draw on (step 2). While civil engineers
have been building bridges for thousands of
years, software is only 30 years old.

What is a "unit” of a software system
{(Step 4(b)}? We do not have any firm idea
ot what a standard module, component or
subroutine ot a system snould be. In the
case ot the certain mathematical functions
{e. g., sin,; log, square root) the problem
is retatively easy; but little software
can be broken down into such easily
described functions. While such concepts
as "levels of abstraction® and "moadular
programming” are attempts at answering this
need, there 1s no ettective definition that
can be wused efficiently in producing
sottware.

Ine probliems ot sottware standards 1S
anotner problem area. 1In the construyction
industry, buiiding codes dictate how 1iron,
steel or glass are to ©be used.
example, it a beam is estimated to need to
support a weight ot lu,Uuu k1lograms, then
a beam capable ot supporting 20,00u
ki1lograms may be wused tor reliability.
However, how do you make a sottware
subroutine “twice as relilable?” What do we
even mean by "sottware reliability?”

While the situation has so tar Dbeen
painted as very bleak, in reality, we are
not that bad ofr. First ot all, most
engineering tields tail padly when appiied
to new tecnhnology. tor example, the
Alaskan Uil Pipeline was estimted to cost
$yuu mif1ion, yet was completed at a cost

ot over SY Dbirliion.
most buildings are quite sturay, some do
coliapse during construction. In sottware,
we just do not have the background to build
on - altnough that experience 1s growing.

simitarly, altnough

For .

e At . oot e e e e —x o

Having just purchased a new house, |

have come to vrealize another distinction

. between engineering and software. The
buitader ot this house has recently
constructed about 3U others of the same

mode!l . However, each differs in some
signiticant way. But there 1is a certain

degree of robustness in the design to allow

all of them to be functional and
essentially the same. This concept of

| robustness is missing from most software
| designs. Also, the builder claims that the

house 1is constructed from “over 400U - Developn Ty v —
actuvities

Cost per year

| parts”. This is actually a small number Time activities
1 when compared to over 100,000 instructions
‘ for a typical 1VYarge program. A software K = total cost (area under curve)
‘ system may actually be a very complex 2=
system, and the fact that reliability and 2
robustness are hard may not be really Cost per yoar = 2Kzee™™

surprising.

Figure &. Rayleigh Curve

To help in estimating needed
resources, it is now recognized that Ine theory ot the Rayleigh curve is
‘ software passes through several distinct based upon the tollowing assumptions:
| stages during its lifetime. This has been 1. Ihe numper ot problems to solve 1n

called the software life cycle. The effort builaing a sottware product 1s tinite, but
required for each stage is approximately as

3 of an unknown number.
follows [Zelkowitz79]: 2 T .)
Requirements - 10% . he process of intormation

i J gatnering, thinking about possible
gpe?‘f‘caf;g“ - 10% solutions, and identifying alternatives all
cg:;g? EOZ consume time. These design decisions

. convert one of the i
Module testing - 25% Comver problgm. unsolved problems into a

Integration testing - 20% 3. The occurrence of these events of
converting unsolved into solved problems is
It is now recognized that the independent and random.
maintenance stage takes a significant part
of the effort - ranging up to 70% of the

total development and maintenance costs. This leads to Poisson solution with an
Using these figures as a guideline, expgnenplal 1ntergvent arrival time
| management can monitor progress and satisfying the equation:

estimate projected costs.
y = exp(-1t)

where y is the probability of the probiem
2.0 RAYLEIGH CURVE ESTIMATION remaining unsolved by time t.
Effective estimation techniques are
‘ being developed by applying results from 4. The number of people working in a
| computer hardware reliability theory group at any time is proportional to the
[Putnam77]. The cumulative expenditures number of problems "ripe” for a solution.
over time for large scale projects (over 50 This assumes that each individual is
man-years of effort) has been found to working independently on unsolved problems
. agree closely with the following equation: to solve.
|
| E(t) = K(l-expl-at**2))
}. P If we let
where E(t) is the total amount spent up to L
time t, K is the total project cost, and a Pr(T>t)= probability that no
| is a measure of the shape of the event occurs in the interval
: expenditure curve. This relationship is (o,t] i
usually expressed as a ditferential . . e =
B equation, called a Rayleigh curve: then from the Poisson assumption:
" E'(t) = ZKat expl-at®=Z) Pr(T>t)=exp(-1t)
| .
B where E'(t) is the rate ot expenditures, or Since Pr(T<t)+Pr(T>t)=1, then the
1 the amount spent on the project during time probability of an event occurring in [0,t]
\in1t t (Figure 4). s Just:
_ 4 Pr(T<t) = 1-Pr(T>t)
’ K =" 1l-exp(-1¢t)

The rate of solving problems is the
derivative, or:
f(t) = -1 exp(-1t)
3'. 1If we now assume that after an

event occurs, p is the probability that the
event 1is -actually solved (e. g., the
correct decision was made). This leads to:
Eiich Pr(T<t) = l-exp(-plt)
f(t) = -p) exp{-plt)

If we further assume that the
of success (p) is a function
(p(t)), then the solution is:

probability
of time

t
pr{T>t) = exp(=1 j pM4T)
. (-]

j -
Pr(Tit) = |- Q1P("' ‘{o f(?ﬁdﬂY)

t

1 p(t) expl~ 5”(:)&1)

flt) =

Based upon empirical data, the best fit for
p(t) 1is bt, yielding the formulas (after
substituting a for 1b/2, and multiplying by
K, the cost of a project): i

Pr(T<t) = K{l-exp{-at**2))
f(tT = 2 Kat exp (-at**2)

The following argument can be used
Justify the feasibility of
development. If we let y(t) represent the
total expenditures on & project, then the
rate of spending can be rewritten as:

to
this

y'{t) = 2Kat{K-y)

This equation contains 2 non-constant
terms: t and (X-y). As a project moves
towards completion, t increases so the rate
of progress increases. This is due to the
effects of the "learning curve” as
personnel become more familiar with the
task. MWorking against this trend is the
term (K-y) which decreases as y increases.
This is due to the project becoming more
complex as the project nears completion.

The Rayleigh curve contains
parameters, K and a; however,
three general characteristics that
used to measure a project: total cost,
rate of development and completion date.
ng of these can be used to measure the
third. This technique has been

investigated, and will be discussed in the
next section.

two
there are
can be

3-5

3.0 SOFTWARE ENGINEERING LABORATORY

The Software Engineering Laboratory, a
joint research project between NASA Goddard
Space Flight Center and the Department of
Computer Science of the University of
Maryland, was established in August, 1976
to study program development in the NASA
environment. The goals of the 1laboratory
are to determine the dynamics of program
development, and to recommend techniques to
produce cost effective software. These
goals can be broken down into the following
three major tasks:

1. A reporting mechanism for
monitoring project progress was developed.
A set of 7 forms were developed, and each
project that is being monitored is required
to fill out each form periodically.

2. Data (from the forms) is being
collected and stored on a computerized data
base. About 1.2 millions characters of
data from 4000 forms are now in the data
base, with another 4000 forms now being
processed. This represents data from about
25 projects, varying in size from single
programmer tasks lasting about a month, to
100 man-month efforts requiring 1u0
individuals about a year to complete.

3. forms

various

The data from the various
are being anaityzed from
perspectives. The issues now under study
include: Programming errors and
reliability, Proauctivity measures,
Complexity measures on the tinished
sottware product, and Kesource estimation
measures.

The torms that
inciude tne totlowing:

are being collected

tGeneral Project Summary. 1lhis torm is
ti11led out at each majJor project mitestone.
Inis 1s approximately six times per
project, or once every b to ¥ weeks.

Component Summary. For each component
ot a system (e.g., subroutine), a component
summary form is tilied out at least twice -
once wnen the component 1s design, and once
when it is completed. 1lhis torm is similar.
to the generat project summary, but 1s tor
a smatier prece ot the system.

Component Status Report. lhis torm is
ti1l11ea out weekly by all project personnel,
ang is the main torm used in keeping track
ot progress. This form 1lists, tor each
programmer, time spent on each
¢omponent, the activity involved with
that {e. g., design, code,
test).

the
and
component

Resource Summary. This is a summary
accounting, by week, ot the total number ot

hours spent on the project by all oproject

personnel.

Change Report Form. This torm is used
to report any change or error made during

development.

Computer Run Analysis. An

entry is

made on this form each time a computer run
is made. It briefly describes the purpose

and resutts of the run.

Attitude System Maintenance.

A form

is filled out during the operational phase

of a project whenever the source programs
need to be moditied.

Note: Not every form is used for
every project; however, this is the

complete list of the forms that are used.

Figure 5 presents a summary of the

data collected from 15 different

projects.

As shown, the size of the programs varied
from 2,000 to 1l1z,0uu statements, and

required from 1 to 11 people to
Most ot the projects consisted of
ot tasks f(e. g., scientific

complete.
a variety

compyting,

utility programs, data processing, etc.),

ana used a variety ot techniques.

lhe
daiscuss

the Laboratory.

remainder ot

report will

ot the issues 1in resource
estimation that are under investigation by

be touna in {Basivi78].

As

curve

discussed
two

system can be described
characteristics:
(1) 1ts total cost
(2) Its rate ot development

(3)

Its completion date

Additional

earlier,
parameters, K ana a, and a
three general

intormation can

the Rayleigh

But two of these characteristics are enough
to determine the constants K ana a. When a

projJect is initiated, the
estimate of K

permits a to
that

is an

personnel
Assuming

proposed budget

the available
calculated.

requirements analysis

determines that these tigures represent an

accurate
the prodblem,
date can

assessment of

the complexity of
then the estimated completion
be computed, and must not be set

arpitrarily during the specitications stage
ot development.

this technique was

collectea

tried with data

the laboratory. The results
are summarized by the ftollowing table:

SOURCE MAX TYPE EXTRACTED
STATEMENTS(K) MACHINE PEOPLE SOFTWARE METHQDOLOGY DATA
2 PDP-11 1 1-5 2 eoe
60 S/360 3 15 5-6-7 .
40 S$/360 10 14-5 348 e
12 $/360 10 145 1-2-5-8-7 b
55 $/360 1" 1-4-5 1 LAt
30° PDP-11 3 2-5 2 Lad
2° NSSC-1 2 14 8 4
5 S$/360 3 1 5-8-7 4
3 $/360 2 1 5-8-7 i
20 PDP-11 3 1-3-5 oo
45 S$/360 7. 15 736 ooe
30 PDP-11 3 1-2-34-5 8 soe
30 S/360 3 1-2-34-5 258 b
47 $/360 8 15 13 soe
70 S$/360 6 14-5 3-4-5-6-7-8 ese
TYPE SOFTWARE METHODOLOGY EXTRACTED DATA
1. SCIENTIFIC 1. CHIEF PROGRAMMER ® SOME GOOD DATA
2. UTILITY 2. TOP DOWN ** GOOD DATA
3. DATA PROCESSING 3. PRE-COMPILE-STRUCTURE *se VERY GOOD DATA
4. REAL TIME 4. POL
§. GRAPHICS 5. WALK THROUGHS

8. CODE READING

7. LIBRARIAN

8. FORMAL TEST PLAN (DURING

DEVELOPMENT)

® ASSEMBLER LANGUAGE(ALL OTHERS FORTRAN)

Figure 5. Projects studied by the Software Engineering Laboratory

[

3-6

PRUJECT A PRUJECT 8
INL1LAL PRUJECTIONS - -
Resources needed {(hrs) 14,213 12,99/
lime to complete {wks) 45 41
Max. res./week {(hrs) 350 320
RAYLE1LH CURVE ESTIMATES
Resources needed 1b,151 14,710
lTime to compiete by 58
AUIUAL PROJECT DAITA
.. Resources needed 17,7182 l1b,5%as
‘lime to complete (.Y ' 54

) Ihe results turned out to be good, but
inconclusive. lhe Rayleigh curve gave 2
gooda estimate for project size and
estimatea completion date; however, the
shape ot the curve tor the actual data was
not good (Frigure b). For large projects,
the etfects of individual management
dectsions become “lost" in the “law ot
large numbers”. However, in our smaller
projects, such management decisions do
artect the 1o0ading curve {Fi1gure b).
Current research is investigating
alternative models to account ¢tor such
variances.

4.0 CONCLUSIONS

The Software Engineering Laboratory
has been organized to study software
development in a production environment.
From the experience gained from operation
of the 1laboratory, we can state the

toitowing conclusions:

ems"Ideal” Rayleigh curve

——"Assumed”" Management curve
~---Actual data

Figure 6. Real vs. Theoretical models

(1) Data collection 1is important.
Obtaining accurate data ot project
development goes a long way towards

eliminating much of the foilklore of
development. How much time 1is actually
spent in design? code? testing? Do newer
technigues {e. g., code reading,
walkthroughs, design languages) really
help? Without objective data, these
questions cannot be answered.

~ (2) Obtaining accurate data 1is hard.
Many programmers view the <collection of
data as excess overhead. Feedback is
needed to convince them that the data is
usetul. In addition, missing data, and
consistency in filling out the forms is of
primary importance.

{3) Various models do seem to describe
the software development process. This
paper has emphasized the resource
estimation problem based on the Rayleigh
curve. Other research using data from the
laboratory is investigating program
complexity, reliability, productivity, and
error rates.

5.0 REFERENCES

[Basili78] Basili V. and M. Zelkowitz,
Analyzng medium-scale software development,
International Conference on Software
Engineering, Atlanta, Ga, May, 1978, pp.
116-123.

[Brooks75] Brooks F., The Mythical Man
Month, Addison Wesley PubTishing Co,
Reading, Mass., 1975.

[Gallagher65] Gallagher P. F., Project

Estimating by Engineering Methods, Hayden
00 0., New York, 1965.

{Putnam77] Putnam L. and R. Woiverton,

Quantitative Management: Software (Cost

Estimating, IEEE Computer Society tutorial,
, New York, MNovember, 1977.

[SRS79) Proceedings of a conference on

Specifications of Reliable Software, IEEE
Computer Society, New York, 1979.

{Zelkowitz79) Zelkowitz M., A. Shaw, and
J. Gannon, Principles of Software
Engineerin and Design, Prentice HalT,
Englewood g1i???, NJ, 1979.

Reprinted from Proceedings, Fifth International Conference on Soltware Engineering, q/

Copyright © 1981 |EEE.

Dy-¢ |

Boo 2o

A META-MODEL FOR SOFTWARE DEVELOPMENT
RESOURCE EXPENDITURES

John W. Bailey and¢ Victor R. Basili

Department of Computer Science
University of Maryland, College Park 20742

ABSTRACT

One of the basic §oals of software engineering
is the establishment of useful models and equations
to predict the cost of any given programminﬁ ro-
ject. Manv models have heen groposed over the last
several years, but, because of differences in the
data collected, types of projects and environmental
factors among software development sites these
models are not transportable and are only valid
within the organization where they were developed.
This result seems reasonable when one considers
that a model developed at a certain environment
will only be able to capture the impact of the fac-
tors which have a variable effect within that
enviromment. Those factors which are constant at
that environment, and therefore do not cause varia-
tions 1in the productivity among projects produced
there, may have different or variable effects at
another environment.

This paper presents a model-generation process
which permits the development of a resource estima-
tion model for any particular organization. The
model is based on data collected by that organiza-
tion which captures 1its particular environmental
factors’ and the differences among its particular
projects. The process provides the capability of
producing a model tailored to the organization
which can be expected to be more effective than any
model originally developed for another environment.
It is demonstrated here using data collected from
the Software Engineering Laboratory at the
NASA/Goddard Space Flight Center.

INTRODUCTION

Several resource estimation wmodels for a
sof tware-producing environment have been reported
in the literature {1,2,3,4,5,6,7,8,9], each having
been developed in a different environment, each
having its particular strengths and veaknesses but
with most showing fairly poor characteristics con-
cerning portability to other environments. It 1is
becoming apparent that it is not generally possible
for one software development environment to use the
algorithms developed at another environment to
predict resource consumption. It is necessary for
each environment to consider its own past produc-
tivity in order to estimate its future productivi-
ties. Traditionally, a good manager can estimate
resource consumption for a programming project
based on his past experience with that particular
environment. A model should be able to do the
same, and can serve as a useful aid to the manager
in this estimating task.

However, if a manager uses a nodel developed
at asnother environment to help him in his estima-
tions, he will wusually find that his intuitive
estimates are better than any from the model. It
would be advantageous for his software—~development
organization to generate a model of its own by
duplicating the basic steps taken in the develop~
ment of some outside environment’s estimation

CH1627-9/81/0000/0107$00.75 @ 1981 IEEE

. appropriate even if they are not

model. The organization could parallel i{ts own
model”s development with the development of the
existing model, making decisions along the way with
respect to which factors have an effect on its
software environment, and could mold the newly
emerging model to its specific environment. This
is seen as an additional advantage over those
models which are only “tuned” to the user’s
environment via a set of specified parameters,
since in the latter case there may be no way to
express certain peculiarities of the new environ-
ment in terms which the model can handle. When one
considers in general how poorly a model from one
enviromment fits another environment, it seems that
such peculiarities are the rule rather than the
exception. Unfortunately, there have been few
attempts to reveal the steps taken in generating a
resource estimation model which would be helpful to
any organization wishing to establish a model for
its own use.

This paper is a first attempt by the Software
Engineering Laboratory of the University of Mary-
land at College Park to outline the initial pro-
cedures which we have used to establish this type
of model for our environment. It is hoped that the
framework for the model presented here is general
enough to help another software development organi-
zation produce a model of its own by following a
similar procedure while waking decisions which mold
the model to its own environment.

One basic approach will be outlined and
developed here, but several variations will be dis-
cussed. The type of model used is based on earlier
work of Walston and Felix at IBM Federal Systems
Division and Barry Boehm at TRW in that it attempts
to relate project size to effort. Some reasonable
measure 1s used to express the size of a project,
such as 1lines of source code, executable state-
ments, machine instructions or number of wmodules,
and, a base-line equation is used to relate this
size to effort. Then, the deviations of the actual
projects from this prediction line are explained by
some set of factors which attempt to describe the
differences among projects in the environment.
These factors may include measures of skill and
experience of the programming team, use of good
programming practices and difficulty of the pro-
ject.

Several of the alternatives
during our sgtudy and these

became apparent
are mentioned when

examined further
here. Although some of the details and ideas used
in this study may not pertain to other environ-
ments, it i{s hoped that enough possibilities are
given to show the general idea of how the techanique

3-8

we used can be applied. The study now involves
complete data on eighteen projects and sub-projects
but was begun when we had complete data on only
five projects. It is hoped that the presentation
of our work will save other investigators who are
developing a model some time or at least provide a
point of departure for their own study.

Background

There exist many cost estimation models rang-
ing from highly theoretical ones, such as Putnam’s
model [l], to empirical ones, such as the Walston
and Felix [2] and the Boehm model [3]. An empiri-
cal model wuses data from previous projects to
evaluate the current project and derives the basic
formulae from analysis of the particular data base
available. A theoretical model, on the other hand,
uses formulae based upon global assumptions, such
as the vate at which people solve problems, the
number of problems available for solution at a
given point 1in time, etc. The work in this paper
is empirical and is based predominantly on the work
of Walston and Felix, and Barry Boehm.

The Software Engineering Laboratory (SEL) has
worked to validate some of the basic relationships
proposed by Walston and Felix which dealt with the
factors that affect the software development pro-
cess. One result of their study was an index com-
puted with twenty-nine factors they judged to have
a significant effect on their software development
environment. As part of their study, they proposed
an effort equation which was of the form
E = 5.2*L'91 where E is the total effort
months and L is the size in thousands of lines of
delivered source code. Data from SEL was used to
show that although the exact equation proposed by
Walston and Felix could not be derived, the basic
relationship between lines of code and effort could
be substantiated by an equation which lay within
one standard error of estimate for the 1IBM equa-
tion, and {n a justifiable direction [10]. Barry
Boehm has proposed a model that uses a similar
standard effort equation and adjusts the initial
estimates by a set of sixteen multipliers which are
selected according to values assigned to their
corresponding attributes. In attempting to fit an
early version of this model, but with the SEL data,
it was found that because of differing environ-
ments, a different baseline equation was needed, as
well as a different set of environmental parameters
or attributes. Many of the attributes found in the
TRW environment are already accounted for in the
SEL haseline equations, and several of the attri-
butes in ‘the SEL model which accounted for changes
in productivity were not accounted for in the Boehm
model, presumably because they had little effect in
the TRW environment. Based upon this assumption
and our experience with the IBM and TRW models, the
meta model proposed in this paper was devised.

in man-

The SEL Fnvironment

The Software Fngineering Laboratory was organ-
ized in August, 1976. Beginning in November, 1976,
most new software tasks that were assigned by the
System Development Section of NASA/Goddard Space
Flight Center began submitting data on development

3-9

progress to our data base. These programs are
mostly ground support routines for various space-
craft projects. This usually coasists of attitude
orhit determinations, telemetry decommutation and
other control functions. The software that {s pro-
duced generally takes from six months to two years
to produce, is written by two to ten programmers
most of whom are working on several such projects
simultaneously, and requires from six man-months to

ten man-years of effort. Projects are supervised
by NASA/GSFC employees and personnel are either
NASA personnel or outside contractors (Computer

Sciences Corporation).

The development facility consists of two pri-
mary hardware systems: a pair of $/360”s and a
PDP-11/70. During development of software systems
users can expect turn—-around time to vary from one
or two hours for small, half-minute jobs, to one
day for medium jobs (3 to 5 minutes, less that
600K), to several days for longer and larger jobs.
The primary language used is FORTRAN although there
{s some application of assembler language.

THE_META~HODEL

is of the
type such as those proposed by

The meta-model described here
ad justed base-line

Walston and Felix and Barry Boehm. Therefore, the
basic approach is a two-step process. First, the
effort expended for the average project is
expressed as a function of some measure of size

and, second, each project’s deviation from this
average s explained through the systematic use of
a set of environmental attributes known for each
project. The remainder of this paper will describe
this process and will follow the format:

1) Compute the background equation

2) Analyze the factors available to explain
the difference between actual effort and
effort as predicted by the background
equation

3) Use this model to predict the effort

for the new project

The Background Equation

The background or base-line relationship
between effort and size forms the basis for the
local model. It {s found by fitting some choice of
curve through the scatter plot of effort versus
size data. By definition, then, {t should be able
to predict the effort required to complete an aver-
age project, given its size. This average effort
value as a function of size alone has been termed

the "standard effort” throughout this paper. This
section deals with:
1.1) Picking and defining measures of size
and effort :
1.2) Selecting the form of the base-line
equation
1.3) Calculating an initial base—line
for use in the model
In any given environment the decision of what

size measure to use would have to depend initially
upon what data is available. In our case, it was

we used can be applied. The study now involves
complete data on eighteen projects and sub-projects

but was beguq when we had complete data on only
five projects. It is hoped that the presencation
of our work will save other investigators who are

developing a model some time or at least provide
point of departure for their own study.

a

Background

There exist many cost estimation models vang-

from highly theoretical ones, such as Putnam’s

the Walston
An empiri-

ing
model [l], to empirical ones, such as
and Felix {2] and the Boehm model {3].
cal del uses data from previous projects to
evaluate che current project and derives the basic
formulae from analysis of the particular data base
available. A theoretical model, on the other hand,
uses formulae based upon global assumptions, such
as the rate at which people solve problems, the
number of problems available for solution at a
given point in time, etc. The work in this paper
is empirical and i{s based predominantly on the work
of Walscton and Felix, and Barvy Boehm.

The Software Engineering Laboratory (SEL) has
worked to validate some of the basic relationships
proposed by Walston and Felix which dealt with cthe
factors that affect the software development pro-
cess. One result of their study was an index coao~-
puted with twenty-nine factors they judged to have
a significant effect on their software development
enviromment. As part of their study, they proposed
an effort equation which was of the form

E= S.ZH.'91 where E is the total effort
months and L is the size in thousands of lines of
delivered source code. Data from SEL was used to
show that although the exact equation proposed by
Walston and Faelix could not be derived, the basic
relationship between lines of code and effort could
be substantiated by an equation which lay within
one standard error of estimate for the IBM equa-
tion, and in a justifiable direction [10]. Barry
Boehm has proposed a model that uses a similar
standard effort equation and adjusts the i{nitial
sstimates by a set of sixteen multipliers which are
selected according to values assigned to their
corresponding attributes. In attempting o fit an
early version of this model, but with the SEL data,
it was found that because of differing environ-
ments, a different baseline equation was needed, as
well as a different set of environmental parameters
or attributes: Many of the attributes found in the
TRW environment are already accounted for 1{n the
SEL haseline equations, and several of the attri-
butes in the SEL model which accounted for changes
in productivity were not accounted for in the Boehm
model, presumably because they had little effect in
the TRW environment. Based upon this assumption
and our experience with the IBM and TRW models, the
meta model proposed in this paper was devised.

in man-

The SEL Favironment

The Software Fngineering lLaboratory was organ-
ized in August, 1976. Beginning in November, 1976,
most new software tasks that were assigned by the
System Development Section of NASA/Goddard Space
Flight Center began subnmitting data on development

3-9

progress to our data base. These programs are
mostly ground support routines for various space-
craft projects. This usually consists of atritude
orbit determinations, telemetry decommutation and
other control functions. The software that {s pro- .
duced generally takes from six months to two years
to produce, is written by two to ten programmers
most of whom are working on several such projects
simultaneously, and requires from six maa-months to
ten man-years of effort. Projects are supervised
by NASA/GSFC employees .and personnel are either
NASA personnel or outside contractors (Computer
Sclences Corporation).

The development facility consists of two pri-
mary hardvare systems: a pair of S/360°s and a
PDP~11/70. During development of software systems
users. can expect turn~around time to vary from one
or two hours for small, half-minute jobs, to one
day for medium jobs (3 to 5 minutes, less that
600K), to several days for longer and larger jobs.
The primary language used is FORTRAN although there
ts some application of assembler language.

THE META-MODEL

The meta-model described here is of the
adjusted base-line ctype such as those proposed by
Walston and Felix and Barry Boehm. Therefore, the
basic approach 1is a two-step process. First, the
effort expended for the average project is
expressed as a function of some measure of size
and, second, each project”s deviation from this
average 1s explained through the syscematic use of
a set of environmental attributes known for each
project. The remainder of this paper will describe
this process and will follow the format:

1) Compute the background equation

2) Analyze the factors available to explain
the difference between actual effort and
effort as predicted by the background
equation

3) Use this model to predict the effort

for the new project

The Background Equation

The background or base~line relationship
between effort and size forms the basis for the
local model. It {s found by fitting some choice of
curve through the scatter plot of effort versus
size data. By definition, then, {t should be able
to predict the effort required to complete an aver-
age project, given its size. This average effort

value as a function of size alone has been termed
the "standard effort” throughout this paper. This
section deals with:
1.1) Picking and defining measures of size
and effort :
1.2) Selecting the form of the base-line
equation
1.3) Calculating an initial base-line
for use in the model
In any given environment the decision of what

size measure to use would have to depend initially
upon what data i{s available. In our case, {t was

decided that size could be measured easily by lines
of source code or by modules and that effort could
be expressed 1in man-months. Consideration should
also be given to the ease with which each measure
can be estimated when the model is used to predict
the effort required for future projects. The upper
management in our programming environment was of
the opinion that source lines with comments was the
easier of the two readily available measures to
predict. Also, it was decided that, based upon the
data available and the ultimate use of the model,
project effort would be defined to be measured from
the beginning of the design phase through accep~-
tance testing and to include programning, manrage-
ment and support hours.

In our data base, the total number of lines
and modules as well as the number of new lines and
new modules were avaflable for the 18 projects and
sub=projects. Initially, we expressed effort in
terms of each of the four size measures mentioned
ahove, To do this, we used three forms of equa-
tions to fit the data, using both the raw data and
logarithms of the data, which provided functions we
hoped would express the basic relationship between
size and effort that exists in our environment.
The forms of the three types of equations were:

E = effort S = gize
E=a*$s + b (1)
E=a®*sb - - (2)
E=a*shb 4+ ¢ 3)

Some difficulties were encountered when
attempting to fit a conventional least-squares
regression line through the raw data. One probable
reason for this is that a correlation between the
deviations from the prediction line and the size of
the project could not easily be eliminated
(heteroscedasticity). Rather than using a least-
squares line with a single, arithmetic standard
error of estimate which would be consistently large
with respect to small projects and often too small
when applying the equation to large projects, we
opted for a prediction 1line which minimized the
ratio between the predicted values for effort and
each actual data point. In this way, the standard
error is multiplicative and can be thought of as a
percent error whose absolute magnitude increases as
the project size increases. If, however, equations
of the second or third form are derived by fitting
a least~squares line through the logarithms of the
data, the standard error automatically becomes mul-
tiplicative when converted back to linear coordi-
nates.

The third form shown above was the most suc-
cessful for us. It was in the form of an exponen-
tial fit but included a constant which removed the
constraint that the prediction line pass through
the origin. This line was not found by converting
to logarithms but by an algorithm that selected the
values which minimized the standard error of esti-
mate when expressed as a ratio. The theory behind
the implementation of this multiplicative standard
error of estimate is described later. Although the

size of our data base was not large enough to
fimmly support wusing this fit rather than a
straight line, we are using it here primarily as an
illustration, and therefore felt justified in
retaining it.

Turning back to the measurement of size, it
was noted that neither the equations based upon
size in terms of new lines of code or new modules
nor those based upon total lines of code or total
modules captured the intuitive sense of the amount
of work required for each project. It was felt
that although using previously-written code was
easier than generating new code, the integration
effort was still significant and should be
accounted for. After examining the background
relationships discussed above, another more satis-
fying measurement for size was derived. Instead of
considering only the total lines or only the new
lines to determine the size of a project, an algo-
rithm to combine these si{zes into one measure was
selected. It was found that by computing the
effective size in lines to be equal to the total
number of new 1lines written plus 202 of any old
lines used in the project, a base-line relationship
of lower standard error could be derived. This new
size measure will be called “developed 1lines” in
this paper. The same technique was applied to
numbers of modules and resulted in a measure of
“developed modules.” Other proportions of new and
old sizes were tried as well as an algorithm which
computed developed size based on a graduated mix-
ture of new and old code where larger projects
counted a higher percentage of their re-used code
in the developed size. Often, these equations did
produce slightly better background relationships,
but the improvement in standard error was judged
not to be worth the added complexity. It was hoped
that as long as some reasonable algorithm was
selected which captured the size as measured by
both the amount of new product as well as old pro-
duct, most of the remaining differences among the
projects should be explainable by the varying
environmental attributes.

At this point, the three base-line equa
based on the computed sgizes of developed
only, were:

tions,
lines

F = effort in man-months of programming and
nanagement time

DL = number of developed lines of source code
wvith cooments (new lines with comments
plus 202 of re-used lines)

Equation: *Standard error of estimate:
E = 1.36*DL + 1.62 1.269 (4)
E = 1.86%pL°93 1.297 (5)
E = 0.73%pL1.16 + 3.5 1.250 (6)

* Note that these are wmultiplicative fac~-
tors. The predicted value given by the
equation is multiplied and divided by this
factor to get the range for one standard
error of estimate. All standard errors of
estimate (s.e.e.) in this paper are of this
type.

3-10

in staff-months

Effort

4T ety
o
1l s
2 -
o
—""'
."'...‘
11 e
Q
]
sl
o
(35
0
b3
[
al
a
olo0 20700 30700 40,00 S0.00 60.00 70.00 80.00 20.00 100.00 130.00 120.C
® pew lines Figure 1 Thousands of lines of source code
® total lines
i 2
+ ®.
3]
1L
a
1]
(-]
=
£t
] .
2o
' .
L)
L)
e
T hd ,’-2
c o
e 7
,I
- ‘4
ael
-
L)
= e
’1-
1}
>
V.
L J
*
\ . R . N . R . ; —_—
ToTo0 20 00 30,00 40.00 $0.00 $0.00 70.00 ©60.00 90.00 100.00 110.00 130.C
Figure 2 Thousands of lines of source code

3-11

DAO &'ﬂ (-} O{‘ [-1 71 o 0:‘
)

Effort 1in staff-months

i
L)

o

on

ol

. b 3

in staff-months

(<1 J [-1-1od

Effort
oe

(-2 3

on

N

10.00 20.00 30.00 40.00 $50.00 63.00 70.00 0.0 <90.00 100.00 110.00 130.C
. €& new lines Figure 1 Thousands of lines of source code
® rotal lines

[2
o . A R . A N N R — A + 4
10 00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00 110.00 130.C
Figure 2 Thousands of lines of source code

3-11

Figure 1 shows how the exponential fit with
constant for developed 1lines falls between those
for new lines and total lines, hopefully doing a
better job than either of the other two in relating
a project”s size to the resources consumed during
its development. The remainder of this paper will
deal entirely with this computed measure of size
since it was our most successful expression for
work output for a given project.

Figure 2 gshows these three background predic-
tion equations superimposed on the data points. It
was decided to use equation 3, above, as the base-
line throughout the remainder of the model genera-
tion since it achieved the best fit to the data
points and suggested the intuitively satisfying
fact that a project requires a minimum overhead
effort (the Y-intercept of the function). Equation
- one, a straight line, does as well statistically,
and could well have been adopted for simplicity.
Since this is meant to be an illustration, however,
and it was felt that the non~linear relationship
between size and effort was more common outside of
our environment, equation three was adopted for use
in this study. The remaining errors of estimation
appear as the vertical distances between each point
and the line. It is these distances in the form of
ratios which we would like to explain in terms of
the environmental attributes.

Project Factors

The next step in determining a model 1is to
collect data about the programming environment of
each project which captures the probable reasons
why some projects took more effort and thereby con~-
sumed more resources than others when normalized
for size. This data could include such factors as
methodologies used during design and developament,
experience of the customer and of the programmers,
managerial control during development, number of
changes imposed during the development and type and
complexity of the project. 1t is assumed that the
correct application of information such as this can
asgist in explaining the variations observed among
projects in terms of their productivities. The
steps described in this section include:

2.1) Choosing a set of factors

2.2) Grouping and compressing this data

2.3) 1Isolating the important factors
and groups

2.4) Incorporating the factors by
performing a multiple regression to
predict the deviations of the points
from the computed base-line

In all, close to one hundred environmental
attributes were examined as possible contributors
to the variations among the productivities of the
projects. Table 1 shows a list of these factors as
well as some others which we did not use. Thirty=-
8ix of the factors were those used by Walston and
Felix, sixteen were used by Boehm and 30 others
were suggested by our enviromment. Although we did
not use all these factors, they are included to
provide additional {deas for other investigators.
It ehould be noted that it 43 not necessary to
consider any factors which are constant for the set
of projects currently in the data-base since the

influence of this factor will already be contained
in the base-line relationship. If, however, a
future project is rated differently in one of these
categories, it may be necessary to reinstate it
into the model.

The process of selecting attributes to use is
largely a matter of what information is available.
Since many of the projects we studied were com-
pleted when this investigation began, it was neces-
sary to rely on project management for the informa~
tion required. The inclusion of past projects was
justified in order to establish as large a data-
base as possible, however, it made it necessary to
be particularly careful about the consistency
between the ratings for current projects and those
for projects already completed. To mnaintsin the
integrity of the values of these attributes, all
ratings produced by the vendor”s management were
examined by the customer”s management and also by
us. In this way we hoped to avoid the temptation
to adjust ratings to reflect the known ultimate
success of past projects.

Many of the attributes required no special
work to assign a value, such as "Teaa Size” or
"Percent Code: 1/0,” but most required imposing a
scale of some kind. We decided that an exact scale
was not possible or even necessary so a six-point
subjective rating was used. This format was chosen
by the managers who would be making the ratings
since it conformed well with the information they
had already collected about many of the attributes.
Most of the factors, then, are rated on a scale
from 0 to 5 with 5 being the most of that particu-
lar attribute (whether it is "good” or "bad"). The
most important point i{s that we tried to remain
congistent {n our ratings from project to project.
The need for this was particularly noticeable when
rating earlier projects in terms of development
methodology. For instance, what may have been
thought of as a "4” rating i{in "Formal Training” for
a project which began coding over a year ago may
actually be a “"3” or even a "2" when compared with
the increased sophistication of more recent pro-
jects. We found it necessary to re—scale a feu of
the attributes because of this consideration.

After a set of environmental factors s
gselected and the data collected, it is necessary to
consider the number of these attributes versus the
number of projects in the data base. It is not
statistically sound to use a large group of factors
to predict a variable with relatively few data
points. Unless a very large number of projects is
being used, 1t will probably be necessary to con—
dense the information contained in the whole set of
factors 1into just a few new factors. This can be
accomplished entirely intuitively, based on experi-
ence, or with the help of a correlation matrix or
factor analysis routines. Although there 18 no
absolute rule as to how many factors should be used
to predict a given number of points, a rule of
thumb might be to allow up to ten or fifteen per-
cent of the number of data points. Strictly speak-
ing, the adjusted r-squared values or the F~values
should be ohserved as factors are added to the
prediction equation via a multiple regression
routine (described below) to avoid the umistake of
using too many factors.

In our environment, we had data on 71 attri-
butes which we suspected could affect the ultimate

3-12

(Walston and Felix:

Customer experience

Customer participation in definition
Customer interface complexity
Development location

Percent programmers in design
Programmer qualifications

Programmer experience with machine
Programmer experience with language
Programmer experience with application
Worked together on same type of problem
Customer originated program design changes
Hardware under developnent

Development environment closed
Development enviromnment open with request
Development environment open
Development environment RJE

Development environment TSO

Percent code structured

Percent code used code review

Percent code used top-down

Percent code by chief-programmer teams
Complexity of application processing
Complexity of p.ogram flow

Complexity of internal communication
Complexity of external communication
Complexity of data-base structure
Percent code non-math and 1/0

Percent code math and computational
Percent code CPU and I/0 control
Percent code fallback and recovery
Percent code other

Proportion code real time of interactive
Design constraints: main storage

Design constraints: timing

Design constraints: 1/0 capability
Unclassified

productivity of a project, but only 18 projects for
which to see the results. We found it necessary,
therefore, to perform such a compression of the
data. Our next step, then, was to examine the
attributes and group into categories those which we

felt would have a similar effect on the project.
As an aid to selecting potential groupings for
analysis, a correlation matrix for all the attri-

butes was studied. It was hoped that meaningful
groups could be formed which would retain an intui-
tive sense of positive or negative contribution to
the project’s productivity. By studying the poten-
tial categorizations of the factors, and how they
performed in potential models to predict developed
lines, we settled upon three groups using 21 of the

Boehm:

SEL:

Table 1

Required fault freedom

Data base size

Product complexity

Adaptation from existing software
Execution time constraint

Main storage constraint .
Virtual machine volatility
Computer response time

Analyst capability

Applications experience
Programmer Capability

Virtual machine experience
Programming language experience
Modern programming practices
Use of software tools

Required development Schedule

Program design language (development and design)
Formal design review

Tree charts

Design formalisms
Design/decision notes
Walk=through: design
Walk-through: code

Code reading

Top-down design

Top-down code

Structured code

Librarian

Chief Programmer Teams
Formal Training

Formal test plans

Unit development folders
Formal documentation

Heavy management {nvolvement and control
Iterative enhancement
Individual decisions

Timely specs and no changes
Team size

On schedule

TSO development

Overall

Reugsable code

Percent programmer effort
Percent management effort
Amount documentation

Staff size

original attributes.
tuent attributes were:

The groups and their consti-

Total Methodology
Tree Charts
Top Down Design
Design Formalisms
Formal Documentation
Code Reading
Chief Programmer Teams
Formal Test Plans
Unit Development Folders
Formal Training

3-13

[Walston and Felfx: T T TTTTTTTTTYR
Customer experience

Customer participation in definition
Cuscomer interface complexity

Development location

Percent programmers in design

Programmer qualifications

Programmer experience with machine -
Programmer experience with language
Programmer experience with application
Worked together on same type of problem
Customer originated program design changes
Hardware under development

Development eanviroament closed

Development environment open with request
Development environment open

Development environment RJE

Percent code structured

Percent code used code review

Percent code used top-down

Percent code by chief-programmer teams
Complexity of application processing
Complexity of p.ogram flow

Complexity of internal communication
Complexity of external communication
Complexity of data-base structure
Percent code non-math and I/0

Percent code math and computational
Percent code CPU and 1/0 control
Percent code fallback and recovery
Percent code other

Proportion code real time of interactive
Design constraints: main storage
Design constraints: timing

Design coastraints: I/0 capability
Unclagsified

Boehm:

Development enviromment TSO SEL

Table 1

——- - - ———— @ w——-- -

Required fault freedom

Data base size

Product complexity

Adaptation from existing software
Execution time constraint

Main storage constraint

Virtual machine volatilicy
Computer response time

Analyst capability

Applications experience
Programmer Capability

Virtual machine experience
Programming language experience
Modern programming practices
Use of software tools

Required development Schedule

Program design language (development and design)
Formal design review

Tree charts

Design formalisms
Design/decision notes
Walk-through: design
Walk=-through: code

Code reading

Top—~down design

Top=-down code

Structured code

Librarian)

Chief Programmer Teams
Formal Training

Formal test plans

Unit development folders
Formal documentation

Heavy management involvement and control
Iterative enhancement
Individual decisions

Timely specs and no changes
Team size

On schedule

TSO development

Overall

Reusable code

Percent programmer effort
Percent management effort
Amount documentation

Staff size

productivity of a project, but only 18 projects for
which to see the results. We found it necessary,
therefore, to perform such a compression of the
data. Our next step, then, vas to examine the
attributes and group into categories those which we
felt would have a similar effect on the project.
As an aid to selecting potential groupings for
analysis, a correlation matrix for all the attri-
butes was studied. It was hoped that meaningful
groups could be formed which would retain an intui-
tive sense of positive or negative coantribution to
the project”s productivity. By studying the poten~
tial categorizations of the factors, and how they
performed {n potential models to predict developed
lines, we settled upon three groups using 21 of the

original attribuces.
tuent attributes were:

The groups and their consti-

Total Methodology
Tree Charts
Top Down Design
Design Formalisms
Formal Documentation
Code Reading
Chief Programmer Teams
Formal Test Plans
Unit Development Folders
Formal Training

3-13

Cumulative Complexity
Customer Interface Complexity
Customer—Initiated Design Changes
Application Process Complexity
Program Flow Complexity
Internal Communication Complexity
External Communication Complexity
Data Base Complexity

Cumulatrive Experience
Programmer Qualifications
Programmer Experience with Machine
Programmer Experience with Language
Progranmer Fxperience with Application
Team Previously Worked Together

We were particularly interested in using a
methodology category due to the findings of Basili
and Reiter [l1l) which implied improvement in the
development process due to the use of a specific
discipline. The methodology category was selected
to closely coincide with the principles of the
methodology used in the experiment. The complexity
category was included to account for some of the
known negative influences on productivity. The
cumulative rating for each of these categories was
merely a sum of the ratings of its constituents
(each adjusted to a 0 to 5 scale). Although it was
necessary to reduce the number of attributes used
in the statistical investigation in this manner in
order to give more meaningful results, the simple
sumning of various attributes loses some of the
information which could be reflected ir these
categories. This is because even though one of the
constituent attributes may be much more important
than another, an unweighted sum will destroy this
difference. One solution to this type of dilemma
is to have many more data points, as mentioned
before, and to use the attributes independently.
Another would be to determine the relative effects
of each attribute and to weight them accordingly.
Without the necessary criteria for either of these
solutions, however, we were forced to continue 1in
this direction and to accept this trade-off.

Incorporating the Factors

The purpose of the attribute analysis is to
explain the deviations displayed by each project
from the derived background equation and, ulti-
mately, to yield a prediction process where the
attributes can be used to determine how far a pro-
ject will “"miss” the background equation, if at
all.

The next step, then, 1is to compute these
differences which must be predicted. A quantity
based on the ratio between the actual effort
expended and the amount predicted by the background
equation was used as a target for the prediction.
In this way, when the model is in use, the back-
ground equation can be applied to determine the
standard effort (the amount needed if the project
behaved as an average of the previous projects in
the data—-base). ' Then, the attributes will be used
to yield a ratio between this rough estimate and a
hopefully more accurate expected value of the
effort required.

The S5PSS [12] forward multiple regression
routine was used to generate an equation which
could best predict each of the project”s ratio of
error. The actual ratio was converted to a linear
scale with zero meaning the actual data point fell
on the base 1line. This was accomplished by sub=-
tracting one from all ratios greater than one and
adding one to the negative reciprocals of those
ratios which were less than one. For instance, 1{f
a project”s standard effort was predicted to be 100
man-months and it actually required 150 man-months,
this ratio would be 1.5. Subtracting one makes
this project”s target value 0.5. If however it had
needed only 66.7 man-months, its ratio would be
«667 which is less thar one. Adding one to the
negative reciprocal of this number gives a target
value of -0.5. The assumption is that this scale
tends to be symmetrical in that the first project
had as many negative factors impact its produc~-
tivity as the second project had positive.

In the first pass at wusing the multiple
regression routine, we were using five attribute
groups. Since the data base was not very large, we
were cautious about assigning any useful signifi-
cance to the results. We therefore recondensed the
attribute data {nto the three groups shown abave.
The results of this attempt are described 1in a
later section.

Variations on the Model

We noticed that it was possible to combine the
two processes of first isolating a background equa-
tion and then applying the environmental attrihutes
to explain deviations from that equation into a
single procedure. To do this, a measure of size
was included as a factor with the set of environ-
mental attributes and the whole group was used to
predict effort. As expected, size was always
chosen first by the forward routine, since it
correlated the best with effort for each project.
This single process lacked the intuitively satisfy=~
ing intermediate stage which related to a base-line
relationship as a half-way point 1in the model”s
results, but it streamlined the mcdel scmewhat.

In order to preserve the possibility of an
exponential relationship between size and effort,
this method was used with the 1logarithms of the
size and effort values. The output of the regres-
sion analysis would be of the form,

log(Effort) = A*log(Size) + B*attrl +
C*attr2 + ... + K (7)

This would convert to,

Effort = Size® * (o{B*attrl+C*ater2+...+K)

(8)
assuming, here, that log base 10 was used in the
conversion.

A third template for a model was tried which
attempted to eliminate nearly all of the reliance
on the actual numerical values of our attribute
ratings in order to legitimize some of our statist-
ical analyses. Only two of the attribute groups
mentioned before were considered, "Complexity” and
"Methodology."” Each of these two ratings were
transformed into two new ratings of binary values
resulting in four new attributes, “High Methodol-

3-14

ogy,"” “Low Methodology,” “High Complexity,” and
"Low Complexity.” The transformation was accom-
plished as follows: {f a project’s rating fell {(n
the upper third of all projects, the value of the
“"High™ binary attribute of that type was assigned a
1 while the value of the "Low™ attribute for that
type was assigned a 0. If the value fell in the
middle third, both binary values were assigned a 0.
If the value fell in the 1low third, the “Low”
attribute was assigned a 1 while the “"High” was
assigned a 0. This reduced our assumptions about
the data to the lowest level for statistical
analysis. For 1illustration, call the four new
binary attrihutes HM, LM, HC, LC for high and low
methodology and high and 1low complexity. The
result of the multiple regression analysis, then,
would be in the form,

Effort = SizeA * IO(B*M*WD*HC+E*LC+K) 9

Since the chance that any chosen attribute value
will be 0O for a particular project is about 2/3,
most of those terms on the right will drop out when
the nodel 1is actually applied to a given project.
Although we did not expect to achieve the same
accuracy from this method, the simplicity of it was
appealing.

APPLYING THE MODEL

As an {llustration of the results obtained
thus far for our environment, this section deals
with the actual values of the data we used and the
models we generated. It should serve as a useful
guide and a summary of the steps we chose to fol-
low. In order to include an {llustration of the
functioning of the completed wmodel, one project,
the most recently completed project, will be
removed from the analysis while a new model |is
developed. This project will then be treated as a
new data point in order to test and illustrate the
performance of the model. Typically, the use of
the model will involve the following steps:

3.1) Estimate size of new project

3.2) Use base~line to get standard effort

3.3) Estimate necessary factor values

3.4) Compute difference this project should
exhibit

3.5) Apply that difference to standard effort

Appendix 1 shows the eighteen projects and
sub-projects currently in our data-base with the
measures of size previously discussed. As stated
above, developed size is all of the newly-written
lines or modules plus 202 of the re-used lines or
modules, depending on which size measure is being
used. The developed size 1is what we chose to
predict with the models generated. We also chose,
as a baseline, the exponential equation with the
constant term. The following {llustration shows
the development of the model with the f{rst seven-
teen points in the data base. The base-line rela-
tionship between developed lines of code and effort
vas:

E=.72¢0D'Y7 434 (s.e.e.=1.25) (10)

The remaining informatcion used about the pro-
jects is shown {n the appendix. The remaining
error ratios from this 1line to each project’s
actual effort were computed and listed. These are
the values which should be explained by the multi-
ple regression analysis. When the model is in use,
then, an error ratio can be derived by wusing the

‘multiple regression equation which can then be

applied to the base-line equation to provide what
should be an even better estimate of effort than
the base~line alone. As discussed, the three main
categories of environmental attributes shown are
the result of distilling many attributes.

The equations computed by the SPSS forward
multiple regression routine which attempt to
express the list of error ratios as functions of
various of the attributes provided are:

ER = Effort ratio (converted to linear scale)
METH = Methodology
CMPLX = Complexity

ER = -.036 * METH + 1.0 (11)

ER = -,036 * METH + .006 ® CMPLX + .86 (12)

~ To apply the model to the unused, eighteenth point,

the base-line equation is first used to establish
the standard effort. Since the estimated size of
the project was 101,000 lines, this standard effort
value was 163 man-months with a range for one stan-—
dard error of from 130 to 204 man-months. When the
additional attributes are used to coampute the error
ratio as given by the multiple regression equa-
tions, the results (for each of the above equa-
tions) are:

ER = -0.224
ER = -0.166

Converting these numbers back to multiplicative
factors means dividing the standard effort by 1.224
and by 1.166, respectively. When these ratios -are
applied to the standard effort value, the revised
effort values are found to be 133 man-months with a
range for one standard error from 115 to 154 man-
months for the first equation, and 140 man-months
with a range for one standard error of from 121 to
162 man—months for the second equation. The actual
effort for the project is known to have been 138
man-months.

Once any new project 1s added to the data
base, at least the generation of the base-line
relationship and the multiple regression analysis
of the error ratios should be repeated. It may
also be necessary to examine the factor groupings
to see I{f they could be modified to increase the
accuracy of the model or to include a previously
unimportant attribute.

For our data, when this eighteenth point 1is
added to the data base, the base-line equation
becomes:

E=.73%0DL1-1% 4+ 3.5 (s.e.e.=1.25) (13)

while the equations to predict the error ratio from
the attributes become:

ogy,” “Low Methodology,”
“Low Coaplexity.” The transformation was accom-
plished as follows: 1f a project”s racing fell in
the upper third of all projects, the value of cthe
"High” binary attribute of that type was assigned a
| while the value of the "Low™ attribute for that
type was assigned a 0. If the value fell in the
middle third, both binary values were assigned a 0.
1f cthe value fell 1in the low third, the "Low"
actribute was assigned a | while the “High™ was
assigned a 0. This reduced our assumptions about
the data to the lowest level for statistical
analysi{s. For {llustration, call the four new
binary attrihutes HM, LM, HC, LC for high and low
methodology and high and low complexity. The
result of the nultiple regression analysis, then,
would be in the form,

Effort = Sizer * lo(B’W’m*HC"'E’LC"'K)

“"High Complexity,” and

9

Since the chance that any chosen attribute value
will be O for a particular project is about 2/3,
most of those terms on the right will drop out when
the nodel {s actually applied to 2 given project.
Although we did not expect to achieve the same
accuracy from this method, the simplicity of it was
appealing.

APPLYING THE MODEL

As an {llustraction of cthe results obtained
thus far for our environment, this section deals
with the actual values of the data we used and che
nodels we generated. It should serve as a useful
guide and a summary of the steps we chose to fol-
low. In order to include an i{llustratioan of the
functioning of the completed model, one project,
the most recently completed project, will bde
removed from the analysis while a: new model s
developed. This project will then be treated as a
new data point in order to test and illustrate the
performance of the model. Typically, the use of
the oodel will involve the following steps:

3.1) Estimmte size of new project

3.2) Use base-line to get standard effort

3.3) Estimate necessary factor values

3.4) Compute difference this project should
exhibit

3.5) Apply that difference to standard effort

Appendix 1 shows theé eighteen projects and
sub-projects currently in our data-base with the
measures of size previously discussed. As stated
above, developed size is all of the newly-written
lines or modules plus 20% of the re-used lines or
modules, depending on which size measure i{s being
used. The developed size is what we chose ¢to
predict with the models generated. We also chose,
as a baseline, the exponential equation with the
constant term. The following i{llustration shows
the development of the model with the first seven-
teen points in the data base. The base-line rela-
tionship between developed lines of code and effort
was:

g=.72%0tY 43

(s.e.e.21.25) (10)

The remaining {nformation used about the pro-

jects 1is showm in the appendix. The remaining
error ratios from this line to each project’s
actual effort were computed and listed. These are

the values which should be explained by the
ple regression analysis.

~muledi-
When the model is in use,

then, an error ratio can be derived by using the
multiple regression equation which can then be
applied to the base-~line equation to provide what

should be an even better estimate of effort than
the base~line alone. As discussed, the three main
categories of environmental attributes shown are
the result of distilling many attributes.

The equations computed by the SPSS forward
multiple regression routine which attempt to
express the list of error ratios as functions of
various of the attributes provided are:

ER = Effort ratio (converted to linear scale)
METH = Methodology
CMPLX = Complexity

ER = -.036 ® METH + L.0 (1)

ER = -.036 # METH + .006 * CMPLX + .86 (12)

~ To apply the model to the unused, eighteenth point,

the base-line equation i{s first used to establish
the standard effort. Since the estimated size of
the project was 101,000 lines, this standard effort
value was 163 man-months with a range for one stan-
dard error of from 130 to 204 man-months. When the
additional attributes are used to compute the error
ratio as given by the multiple regression equa-
tions, the results (for each of the above equa-~
tiong) are:

ER = -0.224
ER = -0.166

Converting these numbers back to nmultiplicative
factors means dividing the standard effort by 1.224
and by 1.166, respectively. When these ratios -are
applied to the standard effort value, the revised
effort values are found to be 133 man—wmcaths with a2
range for one standard error from 115 to 154 man~
months for the first equation, and 140 man-months
with a range for one standard error of from L2l to

162 man—-months for the second equation. The actual

effort for the project is known to have been 138
man-months.

Once any new project is added to the data
base, at least the generation of the base-line

relationship and che multiple regression analysis
of the error ratios should be repeated. It may
also be necessary to examine the factor groupings
to see if they could be modified to increase the
accuracy of the model or to include a previously
unimportant attribute.

For our data, when this
added to the data base,
becomes:

eighteenth point {s
the base-line equation

E=.73%pLt ' 6 4+ 3.5 (s.e.e.=1.25) (13)

while the equations to predict the error ratio from
the attributes become:

ER = -.035 * METH + .98 (s.e.e.=1.16) (14)
ER = -.036 * METIl + .009 ® CMPLX + .80
(s.e.e.>1.15) (15)

It should be remembered that the original
cholice of factors from the entire set, and the
groupings of these factors, was done with regard to
predicting size as measured by developed lines and
was not 80 specifically tuned to predicting
developed modules. It 1is reasonable to expect,
then, that the results of the models generated to
predict effort from the number of developed modules
using these attribute groupings will be less accu-

rate than those using the number of developed
lines. If the objective had been to generate a
model specifically suited to predicting modules,

various ad justments would have been made during the
early part of the model”s development. Also, it is
advisable to review the model each time a new pro-
Ject is completed and its data is added to the data
base. In this way the model can be refined and
kept up-to-date, and will be . able to take into
account changes in the overall programming environ-
ment.

Although we are not reporting here the actual
values and equations generated in the development
of the other forms of this basic model (described
under “Variations on the Model,” above) it became
apparent that none of the model types {s by far
better than the rest, especially considering the
fact that they all have differing amounts of sta-
tistical significance. In terms of a purely inves-
tigative study, all of them should probably be
examined further. As more environmental informa-
tion is added to the data-base, it may be possible
to reorganize the constituent groups involved in
the environmental attributes and to produce better
categories. Also, when several more projects are
completed, it may be possible to justifiably expand
the size of the set of variables used to predict
the expected value in the multiple regression
routine giving the potential for greater accuracy.

CONCLUSIONS

There is reason to believe that the techniques
outlined here and used 1in our laboratory have
potential in terms of producing a useful model
which is specifically developed for use at any par-
ticular environment. The main difficulty seems to
be in determining which environmental attributes
really capture the reason for the differences in
productivity among the projects. The use of too
few of these attributes will mean less of the vari-
ation can possibly be explained, while the use of
too many makes the analysis statistically meaning-
less. We found that 1t was necessary to stop
including factors with the multiple regression
analysis when the r-squared value indicated that we
had explained no more than half of the variatioms
among the error ratios. This would seem to indi-
cate that there were considerably more influences
upon the productivities of the projects than we
managed to isolate. Simplifying the original idea
for the model, however, which reduced the emphasis
on the quality of the data did not weaken the accu-
racy of the model beyond useful proportions. This

is particularly important when so much of the data
which is essential to build the model is subjective
and consequently non-linear.

Acknowledgements: The authors would like to thank
Dr. Jerry Page of Computer Sclences Corporation and
Frank McGarry of NASA/Goddard Space Flight Center
for their invaluable help in ptoviding the data for
this study. R

Research for this study was supported in part by
National Aeronautics and Space Administration grant
NSG-5123 to the University of Maryland. Computer
time supported 1in part through the facilities of
the Computer Science Center of the University of
Maryland.

References

(1) Putnanm, L., “"A General Empirical Solution to
the Macro Software Sizing and Estimating Problem,”
IEEE Transactions on Software Fngineering 4, No.
4, 1978.

(2) Walston, C. and Felix, C., "A Method of
Programming Measurement and Estimation,” IBM
Systems Journal 16, Number 1, 1977.

(3) Boehm, Barry W., Draft of book on
Engineering Economics, to be published.

Software

(4) Lawrence, M. J. and Jeffery, D. R., “Inter-
organizational Comparison of Programming Produc-
tivity,” Department of Information Systems, Univer-
sity of New South Wales, March 1979.

(5) Doty Associates, Inc., Software Cost Estimates
Study, Vol. 1, RADC TR 77-220, June 1977.

(6) Wolverton, R., "The Cost
Scale Software,”
No. 6, 1974

of Developing Large
IEEE Transactions on Computers 23,

(7) Aron, J., "Estimating Resources for Large Pro-
gramming Systems,” NATC Conference on Software
Engineering Techniques, Mason Charter, N. Y. 1969.

(8) Carriere, W. M. and Thibodeau, R., "Development
of a Logistics Software Cost Estimating Technique
for Foreigh Military Sales,” General Research Cor-
poration, Santa Barbara, California, June 1979.

(9) Norden, Peter V., “Useful Tools for Project
Management,” Management of Production, M. K. Starr
(Ed.) Penguin Books, Inc., Baltimore, Md. 1970, pp.
77-101.

(10) Basili, V. R. and Freburger, K, “Prograaming
Measurement and Estimation in the Software
Engineering Laboratory,” Journal of Systems and
Software, Vol. 2, No. 1, 1981.

(11) Basili, V. R. and Reiter, R. W. Jr., "An
Investigation of Human Factors in Software Develop-
ment,” Computer Magazine, December 1979, pp. 21-38.

(12) Statistical Package for the
ences, Univac 1100 series manual.

Social Sci-

3-16

Appendix 1

Project Fffort Total New Developed Predicted Effort Ratio Method- Complex- Exper-
(man- Lines Lines Lines Standard Standard/ ology ity ience
months) Effort Actual

1 115.8 111.9 84.7 90.2 138.7 ’ .835 30 21 16
2 96.0 55.2 44.0 46.2 65.8 1.459 20 21 14
3 79.0 50.9 45.3 46.5 66.2 1.194 19 21 16
4 90.8 75.4 49.3 54.5 79.0 1.150 20 29 16
5 39.6 75.4 20.1 31.1 42.9 924 35 21 18
6 98.4 89.5 62.0 97.5 1n0.1 .982 29 29 14
7 18.9 14.9 12.2 12.8 17.5 1.082 26 25 16
8 10.3 16.3 9.6 10.5 14.7 .704 34 19 21
9 28.5 32.8 18.7 21.5 29.2 .977 31 27 20
10 7.0 5.5 2.5 3.1 6.2 1.128 26 18 6
11 " 9.0 4.5 4.2 4.2 7.4 1.220 19 23 12
12 7.3 9.7 7.4 7.8 11.4 .640 3 18 - 16
13 5.0 2.1 2.1 2.1 5.2 .957 28 19 20
14 8.4 5.2 4.9 5.0 8.2 1.025 29 . 21 14
15 98.7 85.4 76.9 78.6 118.8 .831 35 33 16
16 15.6 10.2 9.6 9.7 13.7 1.138 27 21 16
17 23.9 14.8 11.9 12.5 17.1 1.398 27 23 18
18 138.3 110.3 98.4 100.8 157.4 .879 34 33 16

Apnendix 1

Project Fffort Total Hew Developed Predicted Effort Ratio Method- Complex=— Exper~
(man= Lines Lines Lines Standard Standard/ ology icy ience
months) Effort Actual

13 115.8 111.9 84.7 90.2 138.7 .835 30 21 16
2 96.0 55.2 44.0 46.2 65.8 1.459 20 21 14
3 79.0 50.9 45.3 46.5 66.2 1.194 19 21 16
4 90.8 75.4 49:3 54.5 79.0 1.150 20 29 16
b 39.6 75.4 20.1 31.1 42.9 .924 35 21 18
6 98.4 89.5 62.0 97.5 1n0.1 .982 29 29 14
7 18.9 14.9 12.2 12.8 17.5 1.082 26 25 16
R 10.3 14.3 9.6 10.5 14.7 .704 34 19 21
é 28.5 32.8 18.7 21.5 29.2 .977 31 27 20
10 7.0 5.5 2.5 3.1 6.2 1.128 26 18 6
1 9.0 4.5 4.2 4.2 7.4 1.220 19 23 12
12 7.3 9.7 7.4 7.8 11.4 .640 31 18 16
13 5.0 2.1 2.1 2.1 5.2 .957 28 19 20
14 8.4 5.2 4.9 5.0 8.2 1.025 29 . 21 14
15 98.7 85.4 76.9 78.6 118.8 .831 35 33 16
16 15.6 10.2 9.6 9.7 13.7 1.138 27 21 16
17 23.9 14.8 11.9 lé.S 7.1 1.398 27 23 18
18 138.3 110.3 98.4 100.8 157.4 -879 34 33 16

\

&,\

Ds- &/
oo 2|/

Can the Parr Curve Help with Manpower Distribution and
Resource Estimation Problems?*

Victor R. Basili and John Beane

Department of Computer Science, University of Maryland

This paper analyzes the resource utilization curve devel-
oped by Parr. The curve is compared with several other
curves, including the Rayleigh curve, a parabola, and a
trapezoid, with respect to how well they fit manpower uti-
lization. The evaluation is performed for several projects
deveioped in the Software Engineering Laboratory of the
8- 12 man-year variety. The conclusion drawn is that the
Parr curve can be made to fit the data better than the
other curves. However, because of the noise in the data,
it is difficult to confirm the shape of the manpower distri-
bution from the data alone and therefore difficuit to vali-
date any particular model. Also, since the parameters
used in the curve are not easily caiculable or estimable
from known data, the curve is not effective for resource
estimation.

INTRODUCTION

Two important problems face the project manager at
the beginning of the software development process.
First, the manager must estimate the basic quantities
of concern: the cost of the system, the duration of the
project, and the size of the development team. The
techniques for estimating cost have received more at-
tention, but perhaps the crucial quantity in determining
the success of the project is the schedule. The initial
estimate of duration is often incapable of being changed
because many contracts now include deadlines, with fi-
nancial penalties for missing them. The mistake of
underestimating the project duration can have dire ef-
fects. Brooks [1] points out that the common practice
of increasing the production team when a project is late
can involve more trouble than benefit. Putnam [2] has

*Research supported in part by National Aeronautics and Space
Administration grant NSG-5123 to the University of Maryland.

Address correspondence to Victor R. Basili, Depariment of
Computer Science, University of Maryland, College Park, Mary-
land 20742.

The Journal of Systems and Software 2, 39-69 (1981)
© V. R. Basiii ct al., 1981

presented a model that illustrates in a quantitative way
that the tradeoff of manpower for time is not free. Fur-
ther, there are limits as to how far a schedule can be
shortened depending on the difficulty of the develop-
ment effort. Scheduling decisions cannot be made ar-
bitrarily as a matter of convenience.

Once the estimates of the project cost, schedule, and
team size are made, the next problem facing the project
manager is how to distribute the total effort (repre-
sented by cost and team size) over the course of the pro-
ject schedule. This problem has been solved for some
large-scale projects using the Putnam model. Previous
work has been done at the Software Engineering Lab-
oratory (SEL) at the University of Maryland to decide
whether the early prototype of the Putnam model, de-
signed for large projects, could be applied to small- and
medium-scale projects as well. The results have been
mixed. To understand better why this model is less ef-
fective, it is important to consider the characteristics of
the SEL environment. ’

The Software Engineering Laboratory collects and
analyzes the data from projects buiit by Computer Sci-
ences Corporation for the Goddard Space Flight Center
(NASA). The goals of the laboratory are

1. to provide management with a mechanism to moni-
tor the status of current projects;

2. to collect data to study the software process, to find
what parameters can be isolated (understood), and
to build measures incorporating these parameters;
and

3. to compare the effects of various techniques upon
system development {3, p. 116].

The seven projects used in this study are all attitude
determination packages for satellite systems. They
range in size from 50,900 to 111,900 lines of delivered
source code (including comments). The code is mostly
written in FORTRAN, with a small portion written in as-
sembly language. The cumulative effort varied from 3

18

Table 1. Statistics About the Projects

Project

1 2 3 4 5 6 7
Total lines* 111.9 55.2 509 75.4 754 854 895
New lines® 84.7 440 45.3 49.3 20.1 76.9 620
Developed lines* 90.2 46.2 46.5 54.5 31.1 786 675
Effort (man-months) 115.7 959 78.9 90.7 39.6 98.6 98.3
Duration (months) 158 11.5 13.2 125 8.7 17.4 143
Average staff size 73 83 60 73 46 57 69

“In thousands of lines of source code.

to 10 man-years and lasted 9-18 months. A complete
set of statistics is given in Table 1. All these projects
fall into the medium-size range. It should be noted that
new projects are often upgraded versions or other mod-
ifications of existing systems. The implications of this
are twofold. Many projects can use some of the design
and even the code of previous systems, and the organi-
zation as a whole has great experience with the appli-
cation area (since for them the problems are well de-
fined). In contrast, large-scale projects can be
characterized as needing more than *“2 years of devel-
opment time, 50 man-years of effort or greater, and a
hierarchical management structure of several layers”
{2, p- 302].

The work described in this paper is a continuation of
the studies of Basili and Zelkowitz [3] and Mapp [4].
Their analysis can be divided into two parts. In the first
part, they asked whether the Putnam model could be
used as an estimation tool. They took the Rayleigh
equation (which is the central part of the Putnam
model) and derived a relationship among three impor-
tant quantities of the software process: the total effort
K, in man-hours; the number of weeks 7, until accep-
tance testing; and the maximum staffing Y,, in man-
hours per week. During the requirements phase the
contractor estimates each quantity, and the data are
reported on the general project sumnmary (GPS) form.
Given any two of these estimates, a prediction of the
third quantity can be based on the Rayleigh equation.
The most interesting quantity (as we mentioned before)
is the project duration, since NASA budgets fix the
total resources each year in advance, and the contractor
assigns a fixed number of people to the effort. The pre-
dictions of the time to acceptance testing were quite
good when compared with the actual dates, in contrast
to the original estimates [3]. The GPS estimates were
consistently too low. Thus, the Rayleigh equation pro-
vides a check to ensure the project duration is not
underestimated.

The second part of the analysis considered how well
the Rayleigh curve fit the shape of actual staffing data
over time. The Rayleigh equation can be rewritten in

V. R. Basili and J. Beane

the form of a line for the variables y/r and 2. After
this, a line can be fit to the transformed data using lin-
ear regression. When Basili and Zelkowitz tried this,
they found that the resulting curves did not foilow the
general shape of the data. At a glance it was clear that
other curves could have fit the data better, and the
quantities (T, and K) taken from the fitted curve were
unreliable as predictors.

Tom Mapp carried the curve-fitting comparison one
step further. He tested four curves (a parabola, a tra-
pezoid, a horizontal line, and the Rayleigh curve). The
measure of comparison was the average squared (ver-
tical) distance between the curve and the data points.
Mapp used two techniques to find a best fitting curve
for the Rayleigh equation and the parabola, the linear
technique and a blind search. The blind search system-
atically sampled values from a bounded portion of the
parameter space. The parameter set that yielded the
best error measure became the center of a smaller
“search box.” When a new iteration failed to improve
the error measure, the search was terminated. In every
case the search technique produced a better fit than the
linear method. The best curve, determined from the
rank orderings of the final error measures for four proj-
ects, was the parabola. The study concluded that the
Putnam model was successful at predicting milestones
but did not fit the staffing data for our environment.

In this paper we analyze a new dynamic staffing
model proposed by Parr [5]. To begin we review the
general differences between static distribution models,
based on a work breakdown structure, and dynamic dis-
tribution models, derived from a theory about problem
solving. Then we examine the two theoretical (dy-
namic) models of Parr and Putnam to illuminate the
critical assumptions that shape the curves and how they
differ. Finally, we consider the claims made by dynamic
staffing models and attempt to validate them using data
from our environment. In particular, how well do dy-
namic models actually fit our data, and can the Parr
model be used to predict project duration (in a manner
similar to the Putnam model)?

DISTRIBUTION MODELS, CLAIMS, AND
LIMITATIONS

Static distribution models start with a general descrip-
tion of the activities that constitute the software devel-
opment process for a given environment. Then the tasks
that comprise each activity are grouped under the right
development phase. The important step is to distribute
the total effort across these tasks. Each task is given a
percentage, based on the skill and intuition of the model
builder, and any availabie accounting data (assuming
it reflects a similar environment of software methodol-

Parr Curve Help with Resource Problems

ogies). The percentages can be divided further to take
into account different types of personnel (managers, an-
alysts, programmers, or librarians) and different levels
of experience that will be needed for the job. An ex-
ample of a work breakdown structure is given by Wal-
verton [6]. When the functional specifications are com-
plete, some adjustments will often be made in the
baseline percentages to reflect the special demands of
the particular project.

The static model provides a detailed staffing algo-
rithm once an estimate is made for the total effort and
the project schedule. A staffing algorithm is an excel-
lent tool to monitor the progress of the project. First,
the manager can use the algorithm to anticipate the
fluctuations in his manpower needs before it becomes a
problem. Because hiring new people is difficult, an in-
crease in staffing requires some warning. In addition,
the milestones of the schedule work like a sequence of
checkpoints. When a milestone is not met, the work
breakdown highlights which tasks are in trouble and
possibly need more people.

The impuise to add more people to a late task is a
natural one, but it can cause the task to be even later.
It is unexpected phenomena like this that motivated the
development of dynamic staffing models based on a the-
ory of how we build software. Dynamic models propose
assumptions to help explain such behavior. For exam-
ple. adding more people to a working group increases
the number of communication lines. The job of keeping
people informed is more costly in terms of time and ef-
fort. Also, new people require an adjustment period, to
get acquainted with the task, and will probably divert
some of the energy of the original team members. On
the other hand, there are inherent constraints in the
software problem itself. A partial ordering of the indi-
vidual subproblems exists, which limits the amount of
work that can be done at the same time (and the num-
ber of people who can be effectively used). All these
assumptions could help to explain why a part of the ef-
fort that is applied to a task does not result in any ac-
tual progress.

Dynamic distribution models are not alternatives to
static staffing methods but instead complement them.
Dynamic models deal with the kind of macroscopic
quantities that are needed to use a static model. Used
alone, dynamic methods lack the necessary detail to be
an effective staffing algorithm, but they provide a
glimpse of the overall picture. Dynamic models can es-
timate critical milestones in the schedule. They can
serve as a means of checking the reasonableness of the
percentages in the work breakdown structure with re-
gard to the weekly effort expended. One aspect of the
Putnam model even shows how a change in the speci-
fications at any time will effect the schedule, the total

effort, and the size of the code. Next we consider how
a theoretical model derives an effort distribution.

SHAPING A DISTRIBUTION CURVE; THE
THEORIES

The dynamic models rely on a set of assumptions de-
scribing how we build software. A software project con- -
sists of solving a bounded set of problems. Each prob-
lem represents some aspect of the design or
implementation for which a decision must be made be-
tween possible alternatives. We are concerned with the
constraints describing when effort can be effectively ap-
plied to solving these problems. The dynamic models of
Parr and Putnam agree that the reason for a decrease
in effort at the end of the project is an exhaustion of the
problem set. This decrease reflects the nature of the de-
bugging task. “Debugging is ‘99 percent complete’
most of the time” {1, p. 154]. We do not have adequate
measures to decide when a project is done, or even how
much longer it will take. System debugging does not
lend itself to people working in parallel, because errors
tend to be discovered sequentially. The correction of
one error uncovers another. It requires a smail number
of people working over an extended period to complete
this phase of the project. Both models use an exponen-
tial tail to describe this situation.

The models disagree over what constrains the distri-
bution curve at the start of the project. Putnam argues
that progress can only be made once the development
team becomes familiar with the problem and the pro-
posed method of solution. The familiarization (or learn-
ing) rate that fit his data best was a straight line whose
slope is determined by management’s staffing decisions.
However, there are practical limits as to how fast the
buildup can be. First, it is hard to obtain new people,
whether by hiring them or transferring them from other
projects. Second, there is an organizational limit on the
number of people that can communicate and work ef-
fectively with one another. The rate of the initial
buildup also has implications for the duration of the
project. Given a fixed amount of total effort, the faster
the rise in staffing, the shorter the schedule. The size
and the complexity of the problem fixes a minimum
time period for the project duration.

Parr feels that these considerations focus on the
wrong issue. It is important to understand how the
problem itself limits the effort that can be effectively
applied before considering those management decisions
that are economically motivated. In that way we can
examine an optimal staffing plan for the problem with-
out concern for practical considerations, whose impact
can be analyzed separately. Parr suggests that there are
dependencies between the probilems, so that the work

on a particular task cannot begin until others have been
completed. These dependencies form a partial ordering.
At any given time a subset of the unsolved problems
exists, called the visible set, consisting of those that are
ready to be worked on; in other words, all of the tasks
on which a visible problem depends have been solved.
The size of the visible set is the quantity that manage-
ment is aware of, and (provided there are enough peo-
ple to work on all of the visible problems at once) it
should determine an optimal level of staffing.

The Rayleigh curve rises in a straight line from the
origin to a rounded peak and then falls in an exponen-
tial tail. The formula for the Rayleigh curve is

y() = 2Kate™*,
where

y’ is the effort in man-hours expended per week,
t the time in weeks,

K the development effort in man-hours (the area under
the curve), and

a a shaping parameter.

a determines the slope of the rising portion of the curve
and equals —3¢, where 14 is the point of maximum
manning. When X represents the life-cycle cost of the
system, t, corresponds roughly to the development time
up to acceptance testing. This equation makes explicit
the inverse relationship between the learning rate and
the project duration. In the discussion to follow K rep-
resents the development cost (that is, we assume no
maintenance or enhancement).

The normalized Parr curve is bell shaped (symme-
tric about the origin) and trails off exponentially on
both sides. The formula for the Parr curve is

Y = aK Ae™ /(1 + Aemy't,
where

¥ is the effort in man-hours expended per week,
t the time in weeks,

K’ the development effort in man-hours,

A the horizontal shift factor,

« the time normalization factor, and

v a structuring index.

v measures the extent to which formal structured tech-
niques are a part of the development process. When y
> 1 the peak of the curve is skewed to the right. The
purpose of structured programming is to delay imple-
mentation decisions through the use of abstraction and
information hiding. These practices result in more time
being spent in the specification and design phases so
that the coding and testing phases will be simpler (par-

V. R. Basili and J. Beane

titioned in such a way as to minimize interfaces and
allow maximum parallel effort). a stretches or shrinks
the time variable onto a unitless scale, and A shifts the
curve horizontally along the time axis.

K’ has a different interpretation than K. Putnam as-
sumed that each project has an official startirig date
prior to which no money or people are budgeted. This
was reasonable in his environment, because a separate
organization handled the preliminary work. If the start-
ing date is ¢ = 0, then the Rayleigh curve must pass
through the origin. Parr argues that there is aiways
some effort expended before the official project start.
This early work serves the important function of defin-
ing the problem set that represents the desired software
system (through feasibility studies and requirements
analysis), establishing its internal structure (through
functional specifications), and solving the top-level
problems (through preliminary design) on which all the
others depend. The positive effect of these activities is
to expand the visible set of unsolved problems that is
available to be worked on at the project start. General
experience with the application area, specific design, or
even code contributes to the structuring process. Thus
the Parr curve does not pass through the origin. If K,
represents the initial effort (the area under the curve
before t = (), then X’ = K + K, and K, along with
the shaping parameters a and A, determines y’(0), the
level of initial staffing. More will be said concerning this
relationship in the section on estimating the Parr curve
parameters.

A second difference between the two curves relates
to the degree of flexibility in positioning the point of
maximum staffing. As we mentioned previously, this
point is determined by the slope of the initial rise (7,
being directly related to a). A large slope implies an
early peak and a rapid fall in staffing. Conversely, a
small slope implies a late peak with little or no decrease
before acceptance testing. Basili and Zelkowitz com-
ment that for medium-sized projects “the resource
curve is mostly a step function.” The Rayleigh curve
seems inappropriate to this shape, and “variations in
the basic curve so that it is flatter in its mid-range” are
being investigated. The Parr curve is one possibility. In
the next section we present our results from the curve
fitting comparison between Parr and Rayleigh.

DO DYNAMIC MODELS ACTUALLY FIT OUR
DATA?

We considered two paradigms in our analysis of curve
fitting. First, we wanted to be able, given the data on
the effort associated with a project, to tell what staffing
algorithm (actually, what distribution curve) had been
used in its development. The curve we were looking for

Parr Curve Help with Resource Problems

‘would fit the data better than the others. In particular,
we set up a comparison between the two theoretical
curves (those based on a software theory) of Parr and
Putnam, as well as two control curves with reasonable
characteristics (initial rise to a peak and then a fall). If
a theoretical curve did better, then this would tend ap-
proximately to validate the assumptions made by the
model.

The possibility remained that our data contained so
much noise that none of the curves would stand out as
better than the rest. In that case, a second paradigm is
to be considered: Given the effort data and a staffing
algorithm, we can decide whether in fact the algorithm
had been used for the development process. This para-
digm was tried with a staffing rule of thumb supplied
by the contractor.

The noise comes from several sources. Since the data
is weekly, weeks that contain holidays invoive less total
effort. If one member of the team is sick or on vacation,
there is a drop in the weekly effort. If there is a prob-
lem, several people will work overtime and create a rise
in the weekly effort. This is especially true when the
average staff size is between 4.6 and 8.3 on the projects
studied. To eliminate the noise we tried smoothing the
data and combining four-week intervais. Unfortu-
nately, this had little effect.

The nature of our effort data made it necessary to
use an error measure for comparing curve fits; often a
visual comparison was not possible. We chose the same
measure as Mapp had used, namely the standard error

N - 2
SE=3) Nx(t)] ‘

L 1]
where

N is the number of data points,

x(t) the effort in man-hours expended in week ¢ (the
data), and

f(¢) the distribution curve evaluated at ¢.

The technique to minimize SE involved two routines
that were borrowed from the IMSL (International
Math and Statistics Library) package. The first,
ZXMIN, uses a quasi-Newtonian method to calculate
the minimum of a user-supplied function. The routine
requires an initial guess for the parameters of the func-
tion and then in an iterative fashion generates a new set
of parameters from the old set. In order to avoid con-
verging to a local minimum, we started the search at a
large number of points. The second routine, XSRCH,
did the selection of the initial parameter sets from a
search box of reasonable values fixed by the user. There
are two conditions that control the termination of the
search process, the number of iterations and the differ-

3-22

Table 2. An Initial Curve-Fitting Comparison: Rayleigh vs
Parr Using SE

Project
! 2 3 4 Average
Parr curve 939 2356 2204 2928 2204
Rayleigh curve 3379 4501 3926 4758 3926

ences between consecutive values of the parameters.
One more twist was added to force the search to stay
within the initial search box.

In the first curve-fitting comparison the Parr curve
did much better than the Rayleigh curve on each of
four projects (see Table 2). The average of the standard
error across the projects showed that the Parr fits were
nearly twice as good (2204 to 3926). But these results
were not very interesting, because the Parr curve has
four parameters and the Rayleigh curve has only two.
We had the suspicion that any curve with four param-
eters would have done better than one with two. In
order to make our comparisons meaningful we decided
to examine curves with an equal number of parameters.
In the next test we therefore removed a parameter from
the Parr curve and added one to the Rayleigh curve.
We also included two more control curves. If a control
did as well or better than the curves based on a theo-
retical distribution model, we could conclude that for
our environment there was nothing special about the
curve shapes.

The choice of parameter to remove from the Parr
curve was decided once we noticed that the parameter
A could change by several orders of magnitude and the
curve still maintain a good fit (see Appendix A). The
other parameters seemed to compensate in such a way

ng ta euiocact tha nawwas salatinmch:
aAd W ouExwIt LUV PUWLL lGlallUllSlllp
A= flay) = 2%,

A second possibility for removing A was to set it equal
to a constant. For the projects in question the constant
1000 produced good fits. The results from comparing
these three-parameter variations to the basic Parr curve
(see Table 3) show that a constant 4 does almost as
well as an extra parameter.

To increase the flexibility of the Rayleigh curve we

Table 3. Three- and Four-Parameter Fits

Project
I 2 3 4 Average
A = 1000 939 2356 2913 3060 2317
A = flay) 991 7096 2704 3303 3524

Four-parameter curve 939 2356 2592 2928 2204

Table 4. Three-Parameter Curve Fit

V. R. Basili and J. Beane

Project
1 2 3 4 5 6 7 Average

SE

Parr 938 2356 2913 3060 2367 2072 2864 2367

Rayleigh 1837 3853 2517 3713 2980 2580 3350 3007

Parabola 11s 2298 2505 3497 3078 2508 3203 2601

Trapezoid 974 2265 2588 2981 2517 2722 3066 2445
Rank ordering

Parr - I 3 4 2 i 1 1 13

Rayleigh 4 4 2 4 4 3 4 25

Parabola 3 2 1 3 3 2 3 17

Trapezoid 2 1 3 1 2 4 2 15

incorporated a horizontal shift factor so that the curve
was not forced to pass through the origin. We borrowed
the control curves from the Mapp study, a parabola and
a “trapezoid” consisting of three straight lines. The
exact formulation for these curves is given in Appendix
B. The three-parameter curve fitting comparison (in-
cluding graphs and tables of SE values and rankings)
is presented in Table 4 and Figures 1-7. With respect
to average SE values, the Rayleigh fits had improved,
but Parr still did better. It is reassuring to note that the
Parr curve also did better than either of the controls in
terms of average fit and total rankings. However, we
question whether the differences between these evalu-
ations are large enough to be significant.

We concluded that the large fluctuations in the data
for projects of this size effectively covered up the inher-

Figure 1. Three-parameter fit of man-hours to weeks for
project 1. Key: - - -, Parr curve; --
, trapezoid.

-, Putnam curve;

- - -, parabola;

320
300

280
260
240
220
200

180

llllLlLLLJll]A;llllllllll-s

3 9 1521 27 333945 51 57636975

ent shape of the effort distribution, if in fact such a
shape exists as Putnam and.Parr suggest. Consider our
experience: When fitting the four-parameter Parr
curve, the noise in the data allowed us to change the
characteristics of the curve considerably (as reflected in
the parameter 4) and still retain a reasonable fit. Also,
three very different curves, the trapezoid, the parabola,
and Parr did equally well in the three-parameter com-
parison. The very data seem to contradict the assump-
tion that there are constraints on staffing, whether in-
troduced by management concerns or by problem
dependencies. It therefore appears that we cannot teil
what kind of software environment or staffing algo-
rithm was used given only the effort data for a given
project.

The second paradigm attempts to validate a staffing

Figure 2. Three-parameter fit of man-hours to weeks for
project 2. For key see Figure 1.

450 -
420
390 +
360
330
300
270
240
210
180
150
120
20
60
30

S A SR U S TR

doa o

57

P N T S B T

27 33 39 45 Sl

3 9 15 2

Parr Curve Help with Resource Problems

320
300
280
260
240
220
200
180
160
140
20
100
80
60
40
20

Loy bt s b a b b bt bt § g bt lal

2 6 10 1418 2226 303438424650 54 58

Figure 3. Three-parameter fit of man-hours to weeks for
project 3. For key see Figure 1.

algorithm given both the algorithm and the effort data.
The rule of thumb for staffing that the contractor tries
to follow is this:

1. At the start of the project assign from one-half to
three-quarters of full staffing (because of a lack of
early funding and problems in finding available

people).

Figure 4. Three-parameter fit of man-hours to weeks for
project 4. For key see Figure 1.

400 -
375+ .

350 ¢
325 F LA
300
275
250

L]
J SN R D W N Y I N OO RS 0N SO A W T NS WUUUN [N U I T |

2 6 10 14 18 22 26 30 3438 4246 50 54 58

S W NN WS SON% SN NN SN VORI WY O N N S N ¥

2 6 10 14 18 22 26 30 34

Figure 5. Three-parameter fit of man-hours to weeks for
project 5. For key see Figure 1.

2. At the end of the design phase, plus-or-minus a
month, build to full staffing.

3. During the coding phase maintain full staffing.

4. During the testing phase, (a) if on schedule, de-
-crease manning as appropriate; (b) if behind, work
overtime; and (¢) if there are late-changes to the user
requirements, increase manning by an additional
one-third.

‘ Figure 6. Three-parameter fit of man-hours to weeks for

project 6. For key see Figure 1.

420 F)
390 + .
360
330
300
270
240
210
180
150
120
90 {4
60
0k

[T W S S S N O W |

3 9 15 20 27 33 39 45 51 57 63 69

| IS TN SN U SR WS VU WOt N TS

375+ *
350
325
300
275
250
225
200
175
150
125
00 |/
75 :.'.

25

| S WO S A TN S SORN DU S T O YT U W NS TS ST RN SO

3 9 15 2 27 33 33 45 51 57 &3

Figure 7. Three-parameter fit of man-hours to weeks for
project 7. For key see Figure 1.

These guidelines convey the impression that manage-
ment has considerable flexibility in terms of staffing to
handle problems when they arise. The reason new peo-
ple can be brought in at the end and contribute almost
immediately is the similarity between the projects.
Often a new system is a modification or enhancement
of an old system, as seen in the percentage of existing
code that gets reused, so littie time is wasted in becom-
ing familiar with a new system.

Next we wanted to check whether the contractor’s
rule of thumb was being used in practice. Since the al-
gorithm is expressed as a step function, we needed to
calculate averages for the phases concerned. In partic-
ular, we chose an 8-week period from the middle of
each phase, which we thought could be representative
in the sense that expenditures for those weeks took on
roughly median values for the phase as a whole. We
gave added weight to periods in which expenditures
were more or less stable, whether the period fell in the
middle or not. The averages computed from these pe-
riods are approximate. By selecting a different period
the numbers can be changed by as much as 25 man-
hours. Table S shows the numbers for five projects. If
we assume that the numbers for the coding phase rep-
resent full staffing, they correspond fairly well to the
algorithm. The average percentage of weekly design ex-
penditures was 67% that of full staffing taken across all
projects, a number midway within the range quoted in
the algorithm for design, and various projects seemed
to exhibit behavior that fit well into the three options
for step 4. Project 1 decreased the level of staffing, proj-

. V. R. Basili and J. Beane

Table 5. Verifying the Contractor’s Algorithm

Project Design® Code* Test* Design/code . Test/code
| 197 270 220 0.73 0.81
2 94 364 360 0.26 0.99
3 202 244 253 0.83 1.04
4 205 245 326 0.84 1.33
5 114 170 224 0.67 1.32
Average: 0.67 1.10

“Averages for 8-week periods (in man-hours per week).

ects 2 and 3 remained at the same level, and projects 4
and § increased staffing by one-third during the testing
phase. The conclusion, then, is that we cannot reject the
assumption that the contractor’s algorithm is being
used as a rough guideline by the managers. However,
if we plotted the contractors algorithm as we did the
other curves, the SE would be no better.

REALITY AND THE PARR PARAMETERS

One of the benefits we mentioned in connection with
theoretical effort distribution models was the ability to
predict important milestones in the development sched-
ule. However, before turning to the prediction problem,
we wanted to be sure that the curves we fit to the effort
data resulted in dates that were close to the actual mile-
stones. This was another way of validating the model.
In particular, we looked at the time period from the of-
ficial start of the project through acceptance testing
(t,), or roughly the duration of the development activ-
ity. Solving the Parr equation for ¢, yields

1 In(K'/K) — |
*T T ay 1000
where K] is the cumulative effort up to acceptance test-
ing. (In the SEL environment we have estimated K,
= (.88K. To convert these parameters into their Parr
equivalents we added K to each, so K, = 0.38 (K" —
K,) + K,.) The derivation of the equation for ¢, is given
in Appendix C, and the results of the comparison be-
tween the real values of 7, and the values taken from
the curve are presented in Table 6. Except for project
1, the predicted values are within 5% of the true values.
The bad estimate can be explained (at least in part) by

Table 6
Project
i 2 3 4
t, (estimated) 577 52.1 61.9 55.8
t, (actual) 47.8 54.5 60.8 53.4

Parr Curve Help with Resource Problems

our not beginning to collect data for project 1 until well
into the design phase.

Now that we had some confidence that the Parr
curve fit the data about as well as any other and that
the milestones calculated from the parameters were
fairly accurate, we turned to the difficult problem of
estimating the curve’s parameters. K’ is the total de-
velopment effort, and a model like that of Walston and
Felix [7] or Boehm [8] could be used to obtain an es-
timate. vy describes the degree to which formal (struc-
tured) methodologies are part of the development pro-
cess. This parameter like Putnam’s “technology
constant,” can be calibrated based on the techniques in
use for a given environment. The remaining parameters
A and a determine K, the amount of effort expended
before the official start of the project; a converts the
time variable onto a unitless scale, and A4 shifts the
curve horizontally. Both depend on the duration of the
project, the unit of measure for the time variable, and
what part of the curve (how much of the exponential
tails) is to be used to fit the data. « was introduced in
the derivation of the Parr curve as a proportionality

. constant relating the rate of expending effort to the

amount of work to be done at a given moment. If it took

'one person one time unit to soive each problem in the

development effort, then « would be 1. It can be shown
that when A is large (for our environment 4 was on the
order of 1000) « is approximately equal to the y inter-
cept of the distribution curve, y’(0), divided by X, (see
Appendix D). Our energies were therefore directed to
finding a way to estimate these two quantities.

During the early stages of the project when the ef-
fort estimation and distribution models are needed,
some initial effort data are available (Table 7). We at-
tempted to use the data to estimate the y intercept of
the distribution curve. Table 8 compares the y intercept
with the first data point, the average of the first five
data points, and the average of the first ten data points.
For projects 1 and 4 the initial effort point is a close
approximation to the y intercept, and after 5 weeks the
estimate is even better. However, the averages of the
initial effort for the other two projects do not begin to
approximate the y intercept until after the tenth week.

This approach seemed to fail because of the nature
of our data. Most projects have trouble finding enough
people at the start, and many of the people who are as-

Table 7
Project
1 2 3 4
Old code (%) 242 20.5 11.0 345
Ko/ K 40.6 8.9 33.5 28.0

Table 8
Project
1 2 3 4
y intercept 179 79 138 136
Effort for first week 163 il 20 110
Average for first 5 weeks 175 49 64 133
Average for first 10 weeks 185 71 130 163

signed to the project begin by working part time, so
even when the new effort allows a good deal of parallel
activity at its inception, the problem of short staffing
often squanders the opportunity for a fast start. As a
result, the optimal manpower rates as reflected by the
Parr curve are not met by the projects with early staff-
ing problems. Using the initial effort data for a project
is thus not an acceptable method of estimating ’(0).
We also tried to estimate K, combining those activ-
ities that help define the problem before the official
start of the project. Such activitres as feasibility studies,
requirements analysis, the use of existing design and
code, and the general experience of the contractor with
the application area partition the problem so that more
people can work in parallel at an early stage in the de-
velopment. For a rough estimate we chose the percent-
age of existing code because it was easy to get the data.
Table 7 shows that comparison to K, Much of the vari-
ation in K, is not explained by this factor alone. To im-
prove the comparison other factors (such as those men-
tioned above) will have to be incorporated into the
estimate.
" Thus we were unsuccessful in using the Parr curve
as a predictor of such milestones as completion date
since we were unable to associate the equation param-

eters with any data that would be easy to estimate at

the onset of the project.

CONCLUSION

Dynamic distribution models offer an estimation tool
for critical software quantities such as project duration,
as well as a set of assumptions to enhance our under-
standing of problem solving behavior. To provide some
assurance that these assumptions are valid for a given
environment, we proposed fitting the effort distribution
curve to actual data. In previous studies the Rayleigh
curve proved to be a good method for estimating project
duration, but for small- to medium-scale projects it did
not fit the data. Thus there is some doubt whether the
model can be used to monitor the expenditures of effort
for an environment. This paper analyzed the applica-
bility of an alternative curve developed by Parr. In a
comparison of four curves with an equal number of pa-

Table 9. Parr Curve Fit for A Constrained (Project 1)

V. R. Basili and J. Beane

Table 10. Parr Curve Fit for A Constrained (Project 4)

<20 <25 <40 <100 <200 <1000

<20 <50 <100 <500 <1000 <3000

100ay 7.2 7.6 1.9 9.1 10.1 12.4
Ray) 35.5 53.8 59.3 1344 265.0 1296.1
SE 1382 1338 1218 1091 1019 939

100ary 5.9 8.1 9.1 11.7 12.9 149
fleey) 148 69.1 1334 8317 19106 7643.4
SE 4123 3425 3341 3145 3060 2928

rameters, the Parr curve produced the best fits. How-
ever, the resuits and the data tend to contradict rather
than support the theory on which the curve is based.
The data imply that management has the ability to
change staffing almost arbitrarily to meet the short-
term needs of the project. The fluctuations in the data
imply that a natural shape for the effort distribution
may not exist for projects of this size.

The Parr model must do more than fit effort data.
Although a fitted curve produced an accurate predic-
tion of project duration, the crucial question is whether
we can discover a way to estimate the Parr parameters
themselves. Our efforts have not been fruitful up to this
point, but other options of study remain. For now the
Parr curve has limited usefulness as an effort distribu-
tion and resource estimation tool.

APPENDIX A. Eliminating a Parameter from the Parr
Curve by a Power Relationship

The Parr curve is flexible enough to allow 4 to change by
several orders of magnitude and still retain a reasonable fit.
As A is increased, the product of « and v increased in a sim-
ilar way so as to suggest the following power relationship:

A= flay) =22,

This function was deduced by noticing the change in the pa-
rameters for various fits where the value of A was con-
strained to be less than some bound. In the cases of projecis
1 and 4, the bounds were consistently set too iow, so that by
increasing the bound the fit improved. The results of con-

trasting A are shown in Tables 9 and 10.

APPENDIX B. Three-Parameter Curves

Three curves were compared with the Parr curve in the
three-parameter test. The variable ¢ is time measured in
weeks. .

For the Rayleigh (Putnam) curve,

y(t) = 2Ka(t + 1.)8"“‘"-".
where

y is the effort in man-hours expended per week,

a a shaping parameter related to the time when the curve
reaches a maximum,

K the total effort for the project in man-hours, and
1, a horizontal shift factor to remove the origin constraint.

For the parabola,

y()=at+ bt+c if yu)>0,
=0 if y(1) =<0

The parameters a, b, and ¢ do not have any special meaning
from an estimating point of view.
For the trapezoid,

y() = [H-y)/Tht+y, if 0=¢t<T/3,

= H if T/3=<1<2T/3,
=34 - QQH/Tn if 2T/3 <1< T,
= if t>T,

where

y’ is the effort in man-hours expended each week,

H the maximum manning for the project in man-hours,
T an arbitrary time period in weeks, and

¥, the manning at project start.

The measure for goodness of fit used in comparing the
curves (see Table 4) was

- 1
SE = i 944)) Nx(t)l ‘

il 2]
where
N is the number of data points (the project duration in

weeks), -
(1) the value of the curve at 1, and
x(t) the actual effort in man-hours expended during week 1.

APPENDIX C. Veritying the Time to Acceptance
Testing as Predicted by the Parr Curve

The integral of the Parr curve is an equation for the cumu-
lative effort expended up to time :. We solve this equation
for the time ¢,, the time to acceptance testing.

Y1) = K1 + Ade™)"r

Substitute Y’(¢,) = K, and 4 = 1000:
K/K = (1 + 1000e~™)"'",

1000e™ = (K’/K,)" = 1,

(= In (K/K,)" — 1]

. 1000 !

e Lin(K/K) =1

* ay 1000 ’

Table 6 compares the estimate of ¢, using a fitted three-pa-
rameter Parr curve with the actual data (the values for ¢,
are in weeks).

Parr Curve Help with Resource Problems

APPENDIX D. Searching for a Physical
Interpretation of the Parameter a

a can be expressed in terms of y’(0) and X,. The three-pa-
rameter Parr curve evaluatedat ¢t = Q is

#(0) = 1000aK’/1001"*"".

Using the cumulative distribution curve, the initial effort X,
is

Ko = Y’(0) = K'10017"/7.-

Solving for K’ and substituting back into the first equation
leaves 1000aK,/1001. a is approximately equal to y(0)/ K,.
Table 6 shows a comparison of the percentage of existing
code that is reused in the new system to the percentage of
initial effort as computed by. the Parr curve. Table 7 com-
pares the effort data at the beginning of the projects with the
y intercept of the three-parameter Parr curve. Three mea-
sures for the effort data are used: the first data point, the
average of the first five data points, and the average of
the first ten. All the numbers are in units of man-hours per
week. .

3-28

REFERENCES

1. F. Brooks, The Mythical Man-Month; Essays on Soft-
ware Engineering, Addison-Wesley, Reading, Massachu-
setts, 1975

2. L. Putnam, A General Empirical Solution to the Macro
Software Sizing and Estimating Problem, /[EEE Trans.
Software Eng. 4 (4) (1978).

3. V. Basili and M. Zelkowitz, Analyzing Medium-Scale
Software Development, Proc. 3rd Int. Conf. Software
Eng., Atlanta, Georgia, May 1978

4. T. Mapp, Applicability of the Rayleigh Curve to the SEL
Environment, unpublished, University of Maryland, 1978

5. F. Parr, An Alternative to the Rayleigh Curve Model for
Software Development Effort, /[EEE Trans. Software
Eng. (May 1980).

6. R. Wolverton, The Cost of Developing Large Scaie Soft-
ware, [EEE Trans. Comput. 23 (6) (1974).

7. C. Walston and C. Felix, A Method of Programming
Measurement and Estimation, /BM Syst. J. 16 (1)
(1977).

8. B. Boehm, Software Economics, Prentice Hall, Engle-
wood Cliffs, N.J. 1981.

SECTION 4 — SOFTWARE MEASURES

SECTION 4 - SOFTWARE MEASURES

The technical papers included in this section were origi-
nally published as indicated below:

Basili, V. R., and M. V. Zelkowitz, "Measuring
Software Development Characteristics in the Local
Environment," Computers and Structures, August
1978, vol. 10, copyright 1979 Pergamon Press (re-
printed by permission of the publisher)

Basili, V. R., and K. Freburger, "Programming Meas-
urement and Estimation in the Software Engineering
Laboratory," Journal of Systems and Software,
February 1981, vol. 2, no. 1, copyright 1981
Elsevier-North Holland (reprinted by permission of
the publisher)

Basili, V. R., and T. Phillips, "Evaluating and Com-
paring Software Metrics in the Software Engineering
Laboratory," Proceedings of the ACM SIGMETRICS Sym-
posium/Workshop: Quality Metrics, March 1981 (re-
printed by permission of the authors)

4-1 -

Compaters & Straciures Vol. 10, pp. 394}
© Pergamoc [33s Lid., 1979, Prinwed in Great Bricain

MEASURING SOFTWARE DEVELOPMENT CHARACTERISTICS
IN THE LOCAL ENVIRONMENT?

VicTor R. BasiLl and MARVIN V. ZELKOWITZ
Department of Computer Science, University of Maryland, College Park, MD 20742, US.A.

(Received 12 May 1978)

Abwf»This paper discusses the characterization and analysis facilities being performed by the Software
Engineering Laboratory which can be done with minimal effort on many projects. Some examples are given of the kinds
of analyses that can be done to aid in managing, understanding and characterizing the development of software in a

production environment.

INTRODUCTION

Software development is big business. Estimates on the
actual expenditures for software development and main-
‘gnance were ten billion dollars in 1973{1] and most
srely 15-25 billion dollars today. These are only esti-
mates because little data is gathered by the software
industry in monitoring itself, analyzing its environment
and defining its terms.

The software product and its development/main-
teaance environments cover a wide range. The product
vanics from first time, one of a kind systems, to standard
multi-level run of the mill systems; from large scale
hundreds of man-year developments to small scale one
10 two man-year developments. The environment varies
from shops dedicated to the development of software to
organizations which simply maintain their existing
software system. A large number of methodologies. tools
and techniques are available to help in the cost effective
production of maintainable software. However, most of
these techniques invoive tradeoffs when applied in actual
practice; some tools are impractical in certain environ-
ments and some techniques may not be applicable in
other environments.

For example, for a new one-of-a-kind project where
some specifications are stll unknown or subject to
change (not a recommended procedure), incremental
development techniques, such as iterative
enhancement{2] may be more cost effective than the
more standard top down approach. Some tools, such as
requirements analyzers(3] which are highly effective in
the development of large scale systems, are not effective
when the project is relatively small due to the substantial
overhead in using the tool. Peer code reading is im-
possible in an environment of only one programmer.

Understanding the characteristics of a particular
software environment leads to more cost effective main-
tainable software. This requires knowledge of the
various parameters that affect the development of
software and its maintenance. Unfortunately there is
litde effort expended in .analyzing this process in local
environments. Most of the data has come from the very
large scale developments, projects like OS360, Sage,
Gemini and Sarurn{4).

Although these projects are major contributors to the
software development budgets, they are not necessarily

tResearch supported in part by grant NSG-5123 from NASA
Goddard Space Flight Center to the University of Maryland.

typical of software development across the industry.
However, they are easiest to secure funding for collec-
ting data and analyzing it. For example. if the budget for
a project 1s twenty million doilars, then it is easy to add
two hundred thousand for data collection and analysis, a
mere 1% overhead. However, if the project has a budget
of two bundred thousand dollars, then adding fifty
thousand for data collection imposes a prohibitive 25%
overhead.

What characterizes these large scale software de-
velopment projects? The development activities usu-
ally involve about 30% analysis and design, 20% coding
and 50% testing. However, development costs account
for only 20% of total system costs on some projects if
maintenance and modification activities are included(1].

These cost characteristics however are different for
different software environments. What characterizes the
projects studied above is that they are large one time
only systems. Testing is very expensive because it is
difficult to integrate the various pieces of the system into
a working umit. Clearly smaller better understood
systems would require a smaller proportion of the testing
time and possibly less design and analysis time.

The authors have been analyzing development in an

_environment in which the software is of the six~ten

man-year variety involving the development of ground
support software for spacecraft control; a set of prob-
lems whose basic solutions and designs are fairly well
understood. Thus the tailoring of methodoligies and tools
for this environment would surely be different than in
other environments.

THE SOFTWARE ENGINEERING LABORATORY

The Software Engineering Laboratory began in
August, 1976 to evaluate various techniques and
methodoligies to recommend better ways to develop
software within the local NASA environment. Three
groups participate in the Laboratory—the University of
Maryland. whose role is to develop an operational
measurement environment and analyze the development
process; NASA Goddard Space Flight Center, whose
role is to implement the operational measurement exa-
vironment and whose goal is to discover ways to develop
more product for the money spent; and the contractor,

Computer Sciences Corporation. whose role is to supply

data as they develop software and whose goal is to gain
feedback on project development both for understanding

4-2

Vicror R. Basiul and Marvin V. ZELKOWITZ

the characteristics of past development and to monitor
software development in real time.

More specifically, the goais of the Laboratory are:

1. Organize a data bank of information to classify
projects and the environment in which they were
developed.

2. Compare what is happening with what is supposed to
be happening (¢.g. are the proposed methodologies being
employed as they are supposed to be impiemented?).

3. Isolate the significant parameters that characterize
the product and the environment.

4. Test out existing measures and models as they
appear in the literature (usuaily for large scale software
developments) and develop measures for the local
environment.

5. Analyze methodologies and their instrumentation in
the local environment.

6. Discover and recommend appropriate milestones,
methodologies, tools and techniques for use uader given
conditions in order to develop more manageable, main-
tainable, reliable, and less expensive software products.

The research objectives of the Laboratory can be
divided into three basic areas: management, reliability
and complexity. The management study is to analyze
and classify projects based on management parameters,
and investigate management measures and forecasting
models. The reliability study is to examine the nature
and causes of errors in the environment, find
classification schemes for errors and expose techniques
that reduce the errors that occur in the local environ-
ment. The purpose of the complexity study is to gain
insight into the nature of complexity and develop modeis
that correlate well with those insights and discover
whether various techniques create more systematic and
thus easier to maintain program structures,

The primary data gathering technique for the Labora-
tory is a set of seven reporting forms:

General Project Summary

This form is used to classify the project and is used in
conjunction with the other reporting forms to measure
estimated vs actual project progress. It is filled out by the
project manager at the start of the project, at each major
milestone, and at completion. The final report shouid
accurately describe the system deveiopment life cycie.

Programmer{ Analyst Survey

This form is filled out by each programmer at the start
of the project, and is used to classify the background of
all project personnel.

Component Summary

This form is used to keep track of the components of a
system. A component is a piece of the system identified
by name or common function (¢.g. enwry in a tree chart,
COMMON block, subroutine). With the information on
this form combined with the information on the
component status report, the structure and status of the
system and its development can be monitored. This form
is filled out for each component at the time that the
component is identified (usually during the design stage),
and at the time it is compieted (usually during
testing). It is filled out by the person responsible for the
component.

Component Status Report
This form is used to keep track of the development of
each component of the system. The form is tumned in

weekly by each person on the project, and it identifies
the components worked on, hours devoted to each
component, and tasks performed (e.g. design, code, re-
view).

Resource Summary

This form keeps track of project costs on a weekly
summary basis. It is filled out by the project manager and
lists for all personnel the total number of hours spent on
the project.

Change Report R

The change report form is filled out every time the
sysiem changes because of change or error in design,
code, specifications or requirements. The form identifies
the error, its cause and other facets of the project that
are affected.

Computer Program Rur Analysis

This form is used to monitor computer activities used
in the project. Entries are made every time 2 run is
submitted for processing. The form briefly describes the
purpose of the run (e.g. compile, test, file utility), and the
results (e.g. successful, error termination with message).

DATA COLLECTION ON A SMALLER SCALE

The research goals of the Software Engineering
Laboratory require the collection of large amounts of
data to make full investigations into the nature o the
software development process. The information being
collected by the Laboratory, due to its research nature, is
ambitious and not cost effective for simple management
control; it requires a major expenditure just for process-
ing and validating data for inclusion into the data base.

However, it is possible to gather less data to get
effective resuits in analyzing the characteristics of the
local software environment. For example, a subset of the
information contained essentially on only three basic
forms is used for the analysis in the next section. The
three forms are the General Project Summary, the
Resource Summary and the Change Report forms.

From the General Project Summary the following in-
formation is used:

1. Project description including the form of input
(specifications), products developed and products
delivered.

2. Resources of computer time and personnel, includ-
ing constraints and usable items from similar projects.

3. Time including start and end dates and estimated
system lifetimes. :

4, Size of project including various measures such as
lines of code, source lines and number of modules.

. Cost estimates, man-month estimates and sche-
dules.

6. Organization factors, personnel and the kinds of
people used (e.g. managers, librarians. programmers).

7. Methodologies, tools and techniques used.

Data from the Resource summary includes weekly
charges for manpower and computer time, and other
costs for all categories of personnel. The change report
form suppiies data on changes made to the system, when
they were made, what modules were affected by the
change. and why the change was made.

PROGRESS FORECASTING

One important aspect of project control is the valida-
tion of projected costs and schedules. A model of esti-

4-3

Measuring software development characteristics

mating project progress has been developed and with it
estimates on project costs can be predicted.

The Rayieigh curve has been found to closely resem-
ble the life cycle costs on large scale software projects|S,
6]. The curve yielding current resource expenditures (y)
at time (t) is given by the equation:

y=2Katexp(-at)

where the constant K is the total project cost, and the
constant a is equal to 1/(Td**2) where Td is the time
when development expenditures reach a maximum. The
following analysis demonstrates how this data can be
used for management control of 2 project. The data was
obtained on projects buiit for NASA and monitored by
the Software Engineering Laboratory.

For each project in the NASA environment, require-
ments analysis yields estimates of the total resources and
development time needed for completion, which is
recorded on the General Project Summary form. The
following three parameters are relevaat to this analysis:

1. Ka, total estimated resources estimated to be
needed to complete the project through acceptance tes-
ting (in hours).

2. Yd, the maximum resources estimated to be needed
per week to compiete the project (in hours).

3. Ta. the number of weeks estimated until acceptance
testing.

Since the Rayleigh curve has only two parameters (K
and a), the above system is over specified and one of the
above values from the General Project Summary can be
determined from the other two. Thus the consistency of
those estimates can be validated. Alternatively, by esti-
maxing two of these parameters (e.g. total cost and
maximum weekly expenditures), then the third value
(e.g. completion date) can be calculated.

For example, since budgets are generally fixed in ad-

L3
‘e oo

t
1]
]
t
)
t
’
i
-3 L
& - . L]
-l
t * . @
[} Sesscsas
[} L] LX) . ve
[- . . .
1 * aa .
1 - . .
t -
] (& J .
] - . ca
1 es @
=21 .
ot L] .
~t
LR
LIS L J oo @ .
x 3
[.o - .
w | L
a2) . -
1 v
« i -
w | esepn L]
& - .
=X}
"wo
= * -
- I
o ¢ -
= ' -
.
'
1]
(] - @
)
1 -
1
(-2 3
(X} .
ot
]
)
'
]

vance, there is usually littie freedom with total resources
available (K). Also, since a fixed number of individuals
are usually assigned to work on the project, the maxi-
mum resources Yd (at least for several months) is also
relatively fixed. Therefore, the completion date (Ta) will
vary depending upon K and Yd.

As stated above, Ka is the total estimated resources
needed to develop and test the system through the ac-
ceptance testing stage. For each environment, the actual
resources K must be obtained from this figure. There are
several methods for estimating K. One approach is by
the empirical data available on past projects. By studying
past projects as NASA, this figure is 12% greater than -
estimated expenditures (hence K =Ka/88). The
remaining 12% is for last minute changes after accep-
tance testing. Since maintenance costs are not covered,
this figure seems quite low when compared to other
prognmmmg environments~—the correspondmz figure in
other organizations that do include maintenance costs
will probably be correspondingly higher.

Give K, 2 was computed by assuming different values
of Td to yield the given value of Yd on the General
Project Summary. Then given coastant a, the estimated
date of acceptance testing T3 can be comput as follows:

The integral form of the Rayleigh curve is given by:

E = K(1-exp(~at?)
where E is the total expenditures up to time t. From the
previous disucssion, we know that at acceptance testing,
E is .88 K (for NASA). Therefore,
B8 K = K{1 - exp(—at®)).
Solving for t yields:

t = sqrt(—In(.12)/a).

ravd 1%

TEEX
Fig. 1. Project A—Estimated resource expenditures curve based upon initial estimates. s, Estimating curve with

 Yd (maximum resources) fixed. + . Estimating curve with Ta (Completion dare) fixed.

-, Actual data.

4-4

Vicror R. BasiLi and MArvIN V. ZELXOWITZ

Also, in a second analysis, the estimated acceptance
time Ta was fixed in order to yield a value of a (and
hence Yd) that represents the manpower needed to finish
on schedule.

If the original estimates from the General Project
Summary are accurate, then the estimated and caiculated
values should be comparable. If the maximum manpower
estimate was reasonable, then the predicted date for
acceptance testing should be similar to the estimated
date on the General Project Summary. If this acceptance
date is reasonabie, then maximum manpower estimates
should be similar to the caiculated values.

Figure 1 represents data from one actual project. Ac-
cording to the above analysis two different Rayleigh
curve estimates were plotted. The curve limiting maxi-
mum weekly expendiutres (Yd) might be considered the
more valuable of the two since it more closely ap-
proximates project development during the early stages
of the project. In this case, the weekly expenditures from
the General Project Summary were insufficient for
completing acceptance testing by the initially estimated
completion date Ta. The model predicted acceptance
testing in 58 weeks instead of the proposed 46 weeks.
The actual date was 62 weeks—yielding only a 7% error
(Fig. 2).

In order to complete the project in 46 weeks, up to
440 hr per week (rather than the estimated 350 hr per
week) would have to be spent.

As it tumed out, the project used approximately
1600 hr more than initially estimated and maximum
weekly resources were slightly more than original esti-
mates (371 hr/week instead of 350 hriweek). If these
corrected figures for Ka and Yd are used in the analysis,
then Ta, the date for acceptance testing, is 60 weeks
instead of the actual 62 weeks—an error of only 3%.

Overhead is often an elusive item to pin down. In our
projects three aspects of development have been
identified: programmer effort, project management, and
support {librarians, typing, etc). In one project (Fig. 3),
programmers accounted for about 80% of total expen-
ditures with the support activities taking about one third
of the remainder. In addition, only about 60% of all
programmer time was accountable to explicit
components of the system (as reported on the
Component Status Report). The remaining time includes
activites like meeting, travel, training sessions, and other

activities not directly accountable. This *“loss” of time is
a signficant overhead item which must be considered in
developing accurate project budgets.

ERROR ANALYSIS

The correction of errors in a system is the major task
of integration testing. Even a simple counting of errors
can be useful as a management estimating tool. Figure
4(a) represents the number of error reports reported per
week on one NASA project. It remained surprisingly
constant over the testing stage. However, the more in-
teresting measure is the handling rate(7}, or the number
of different components altered each week (Fig. 4b).

Consider the following set of assumptions:

1. The number of errors in a system is finite, but
unknown.

2. The probability of finding an error is proportional to
the number of individuals working on the problem.

3. The probability of finding an error is random and
uniformly distributed.

These three assumptions lead to a Poisson distribution

~—at

y=¢

as the probability of an error remaining after time t.
Furthermore, if we include the assumption that the
probability of fixing a found error (as opposed to creating
a new error by fixing the previous error) is the function
a = bt (e.g. errors are “easier” to find as you get “good at
it"™), then the resulting distribution is the same Rayleigh
curve described previously(5].

Therefore, if N is the total number of errors in a
system, and if h is a measure of the maximum number of
errors found per week, then the number of errors found
per week agrees with the curve:

y = 2Nht exp(—ht?).

A preliminary evaluation of the data of Fig. 4 (and
other projects) seems to bear out these assumptions.
Thersfore, by using least squares techniques, the follow-
ing algorithm can be used to measure testing progress:

1. Collect data on errors reported for several weeks.

2. Use least squares to fix a curve to this data. This
gives a measure of N (modules handled) and h (2
measure of maximum errors found).

3. N gives the number of modules in error in the
system, however, this value can never be reached

" INITIAL ESTIMATES FROM GENERAL PROJECT SUMMARY

Ka, Resources needed (hours)
Ta, Time to completion (weeks)
Yd, Maximum resources/week (hrs)

14213
46
350

COMPLETION ESTIMATES USING RAYLEIGH CURVE

K. Resources needed (hours)
Estimated Yd with Ta fixed (hrs)
Estimated Ta with Yd fixed (hrs)

ACTUAL PROJECT DATA
K, Resources needed (hrs)
Yd, Maximum resources (hrs)
Ta, Completion time (weeks)

Ta, estimated using actual
values of K and Yd (weeks)

16,151
440
58

17,742
m
62

Fig. 2. Estimating Ta and Yd {rom General Project Summary data.

- 4-5

Measuring software development characteristics

eeecesssscsvsssvsosvesed
PR AR L e
PR R L e
e erPIPCESICEIIIIOIBROEPIES

(IR RN NENY)

(X IRENIR]
98440804008 =g440 0
V8008088300~ 4,
00000 8mm, 0y,

tetese,,

PRSI IIEIEEIII 00000000000 Rm o qqus
teeed,
se0d,

PEEIAL 0040000000084 anna

FE44 0080000800 8000080 -mmmogqq
2044000004008 ncvan,,

$A00 0003400004000 084 tmmmmmmn,y,,,

1000004040080 80ocmnann,,,

Fig. 3. Resources expended on various developmental activites. +, Programmer effort. —, Management effort. -,
Support effort (librarians, typing, clerical, etc.).
(a)

(b)
Fig. 4. Handling and report rates on one project. (a) Report rate by week. (b) Handling rate by week.

exactly. Compute the time needed to get the number of
remaining errors to an “‘acceptable™ level([8].

The project represented by Fig. 4 shows the practi-
cality of this measure. This project has a total of 1115
components that were handled. A least squares fit yiel-
ded an N of 1024.9 and an h of .0009024 with a cor-
relation of .7264. This figure of 1024 was only an error of
8% in the true handling rate. Current research is studying
this aspect of errors in order to refine this measure
further.

Acknowledgements—We would like to acknowiedge the contri-
butions and cooperation of Mr. Frank McGarry, head of the
Systems Development Section of NASA Goddard Space Flight
Center. He has been instrumental in organizing the Laboratory
and in interfacting with the contractor in order to see that the
data is collected reliably and timely. We would also like to thank
Computer Sciences Corporation for their patience during form
development and their contributions to the organization and
operation of the Laboratory.

CoA S, WY1=2. D

REFERENCES

1. B. Boehm, Software and its impact: 2 quantitative assessment
Datamation 97-103 (July 1977).

2. V. Basili and A. J. Turner, Iterative enhancement: a practical
technique for software development. I[EEE Transactions
Software Engng 1(4), 390-396 (1975).

. D. Teichroew and E. A. Hershey, PSL/PSA: a computer aided
technique for structured documentation and analysis of in-
formation processing systems. IEEE Transactions Software
Engng 3(1), 4148 (1977).

4. R. Wolverton, The cost of developing large scale software.

IEEE Transactions Comput. 2)(6), 615-636 (June 1974).

5. P. Norden, Use tools for project management. Management of
Production. (Edited by M. K. Stair) pp. 71-101. Penguin
Books, Baltimore, Maryland (1970).

6. L. Putnam, A macro-estimating methodology for software

development. IEEE Computer Society Compcon, pp. 138-143,

Washington, D.C. (Sept. 1976).

L. A. Belady and M. M. Lehman. A model of large program

development. IBM Systems J. 18(3), 225-252 (1976).

8.). D. Musa, A theory of software reliablility and its ap-
plication. JEEE Transactions Software Engng 1(3), 312-327
(Sept. 1975).

w

bad

Programming Measurement and Estimation in the
Software Engineering Laboratory *

Victor R. Basili

Department of Computer Science, University of Maryland

Karl Freburger

General Electric Information Services

This paper presents an attempt to examine a set of basic
relationships among various software development vari-
ables, such as size, effort, project duration, staff size, and
productivity. These variables are plotted against each
other for 15 Software Engineering Laboratory projects
that were developed for NASA/Goddard Space Flight
Center by Computer Sciences Corporation. Certain rela-
tionships are derived in the form of equations, and these
equations are compared with a set derived by Waliston
and Felix for IBM Federal Systems Division project data.
Although the equations do not have the same coefficients,
they are seen to have similar exponents. In fact, the Soft-
ware Engineering Laboratory equations tend to be within
one standard error of estimate of the IBM equations.

INTRODUCTION

Manv models of software dgvplnpmnnf have been nro-

J ALaVReLLS L Tl w N F3t-9 P

posed in the literature. They all assume some set of re-
lationships among the factors affecting the process. One
of the goals of the Software Engineering Laboratory
(SEL) [1, 2] has been to try to understand the devel-
opment process by collecting and using data to evaluate
the relationships proposed in the various models.

The Software Engineering Laboratory is a joint ef-
fort of NASA/Goddard Space Flight Center, Com-
puter Sciences Corporation, and the University of
Maryland. Its general goals have been to analyze the
development of software in order to evaluate software

*This research was supported in part by National Aeronautics
and Space Administration grant NSG-5123 to the University of
Maryiand.

Address correspondence to V. R. Basili, Department bf Com-
puter Science, University of Maryland, College Park, Maryland
20742,

The Journal of Systems and Software 2. 47-57 (1981)
©Elsevier North Hoiland, Inc. 1981

development practices, models, and metrics so they
may be better applied in understanding, managing, and
engineering the process and the product. This paper
analyzes one particular set of programming factors and
their interrelationships. It completes a previous study
[3] based on fewer data. These factors include the de-
velopment effort, lines of code, number of modules, du-
ration, pages of documentation, team size, and produc-
tivity. One of the most interesting relationships is
between lines of code and effort. Contrary to intuition,
previous researchers have reported that the relationship
between these two factors is almost linear {4, 5]. Sev-
eral studies have been conducted on a subset of these
relationships.

Chrysler [6] collected data on 36 programs in one
organization, Johnson [7] collected data on 169 pro-

grams in one organization, and LaBolle [8] and Nelson

[9] anaiyzed data derived largely from the System De-
velopment Corporation. Jeffrey and Lawrence [4] pre-
sent results obtained from the analysis of 103 programs
from three organizations. Waiston and Felix [5] col-
lected data on 60 projects in one organization. A full
discussion of previous programming productivity re-
search may be found in the article by Chrysler [6].

It is clear that because of biases in the data and data
collection process and the lack of control in the various
studies, including our own, only the collection of data
in many environments by many researchers will permit
a wealth of evidence to be assembled sufficient to gen-
erate confidence in the relationships derived. In order
to do this, however, results must be published using
agreed upon, well-defined terms and explicitly stated
environmental constraints so that the experimenter can
relate what he is testing to previous studies.

To evaluate thie relationships between factors, we

tried to compare our findings with those of a previous
study using the same definitions and tryving, whenever
possible, to make clear the differences in the two envi-
ronments. Some variations of these factors were also
studied and these are explicitly defined in this paper.
The data here were obtained from a set of projects de-
veloped at NASA/Goddard by Computer Sciences
Corporation. The findings are compared with the re-
sults of a study by Walston and Felix [5] at IBM Fed-
eral Systems Division. The major differences in the two
environments are summarized below.

The SEL data base currently includes 13 projects,
ranging in size from 1.6 to 112 thousand lines of code
and in effort from 1.8 to 116 man-months. The Wal-
ston-Felix IBM data base includes 60 projects ranging
in size from 4 to 467 thousand lines of code and in effort
from 12 to 11,758 man-months. The IBM project data
involve eight different languages on 66 different com-
puters covering a very wide range of applications, per-
sonnel, and experience. The SEL projects are all in
FORTRAN on two different computers and involve pre-
dominantly the functions for ground support software
for satellites. Most projects were developed from a rea-
sonably common programming pool, and most of the
designs were well understood and similar :0 work pre-
viously performed, if not by the particular individual at
least by the organization. In fact, most of the top-level
design is somewhat standard.

Further discussion of the SEL data is ziven in the
next section. The third section discusses the basic rela-
tionships derived from SEL using the same techniques
as those of Walston and Felix [5]. Our data are then
fit to the Waltson-Felix equations where appropriate.
We conclude by attempting to validate the hypothesis,
suggested by Jeffery and Lawrence [4], of a linear re-
lationship between effort and product size.

THE SAMFLE DATA

Fifteen completed projects were used in this study. All
were developed at NASA’s Goddard Space Flight Cen-
ter by NASA personnel and outside con.ractors. Five
of the 15 projects are attitude determination systems,
developed on an IBM System 360 in FORTRAN with
some minor assembly language code. One project is an
attitude determination suprort utility used to calculate
parameters needed by the larger attitude determination
systems. It was a one-man project developed on a PDP
11/70 and converted to an IBM System 360, which was
the operational machine. The seventh project is an in-
teractive graphics package developed on a PDP 11/70
in FORTRAN and MACRO-11 assembly language. A sim-
ilar system already existed on an IBM System 360. The
cther eight data points are separately developed sub-

V. R. Basili and K. Freburger

systems of a singie attitude determination system. The
individual data points from design through testing rep-
resent their independent development profiles and do
not include any subsystem integration effort. They were
developed for an IBM System 360 in FORTRAN. Each
subsystem was developed predominantly by a single in-
dividual. More information on several of the projects,
methodologies, and environment are given by Basili et
al. [1].

Data were collected from these projects with the
forms and techniques described by Basili et al. [1]. The
data of interest in this study were the total effort re-
quired to produce the finished product, lines of source
code in the finished product, number of modules, pro-
ject duration, documentation size, productivity, and av-
erage staff size. A detailed description of these follows:

a. The total effort E is defined as the number of man-
months of effort used on a project, starting when the
requirements and specifications become final
through acceptance testing. It includes program-
ming effort and managerial and clerical overhead.
One man-month of effort is defined here as 1734
man-hours.

b. The total number of delivered lines L of source code
is defined as the total number of lines of source code
delivered as the final product (expressed in thou-
sands of lines). It does not include stubs or any code
thrown away. Source lines are 80-character source
records provided as input to a language processor,
including data definitions and comment lines.

c. The number of lines of new code (NL) is the number
of source lines in the final product that are not
reused code (expressed in thousands of lines). A
block of code is considered to be reused if it was de-
veloped for a different project and less than 20% of
the code is changed: if more than 20% of the code is
changed, the whole biock is considered new code.

d. The number of developed lines of code (DL) is a de-
rived quantity equal to the number of new lines plus
20% of the reused lines: DL = NL + 20%(L —
NL). The 20% overhead is charged to account for
such items as system integration and full system
test.

e. The total number of modules M in a project is the
number of modules delivered in the final product.
For all of the projects in this study, a module is de-
fined as a separately compilable entity, such as a
subroutine, function, or BLOCK DATA unit.

f. The number of new modules (NM) is the number
of modules in the final product that are not reused
modules. A module is considered to be reused if it
was developed for another project and has less than
20% of its code changed.

Programming Measurement and Estimation

g. Project duration D is defined to be the time (in
months) from the start of a project (receipt of re-
quirements and specifications) to the end of accep-
tance testing.

h. Documentation (DOC) is measured in pages and is
defined as the program design, test plans, user’s
guide, system description, and module descriptions.
The program design is a handwritten document. The
module descriptions contain a one-page description
of each module in the final product.

i. Productivity P is a derived quantity, defined as the
ratio L/ E of total lines of source code to the total
effort required to produce the lines of code. Produc-
tivity is expressed in lines of code per man month of
effort.

j- The average staff size S of a project is defined as the
total man months of effort divided by the project
duration: S = E/D.

Because one of the stated objectives of this research

was to compare the results with those of a previous °

study [5], some of the definitions were chosen to be con-
sistent with the definitions used in that study. The def-
initions of new and developed source lines of code (NL
and DL} were selected to match the definitions used in
the programming environment under study. The defi-
nition of documentation size was constrained by the
data avzilable.

Table 1. Summary of Results

ANALYSIS AND RESULTS

This section presents an analysis of various relation-
ships that may be useful as estimating aids to project
personnel. The data used for each variable are as de-
scribed in the previous section. A summary of the re-
sults is presented in Table 1 (see also the end of this
paper).

Where Walston and Felix performed an analysis of
a similar relationship a comparison of the results is
given. Where the results of this study and the Waiston-
Felix study are considerably different, an attempt is
made to determine what factors (if any) may contribute
to that difference.

To compute the relationships between the variables,
two-variable regression is used. For exponential rela-
tionships (such as those presented in the Walston-Felix
paper), the data are first linearized by taking loga-
rithms. A two-variable linear regression (least squares
fit) is then performed on the transformed data. The lin-
ear coefficients become exponential relationships when
transformed back into the original domain of the data.
For linear relationships, a two-variable linear regression
is performed on the data.

The standard error of estimate (SE) provides an es-
timate of the range above and below the line of esti-
mation within which a certain proportion of the items
may be expected to fall if the scatter is normal. Assum-

*Standard error of estimate,

*Coefficient of determination.

Estimated Level of Walston-Felix .
variable SEL equation SE* ree2t significance equation SE° res2t
Total effort E = 1.38%(L**0.93) 141 0.93 0.001 E = 52%L**0.91) 2.51 0.64
E = 1.58%(NL**0.99) 1.31 0.96 0.001
E = 1.48%(DL**0.98) 1.29 0.96 0.001
E = 0.652*(M**1.19) 1.49 0.90 0.001
E = 0.183*(NM**1.05) 1.57 0.87 0.001
E=103*L + 2.04 16.1 0.32 0.001
E = 1.55*NL + 1.19 11.0 091 0.001
E = 1.46*DL + 0.22 10.7 0.92 0.001
E = 0.27*°NM - 2.20 11.4 0.91 0.001
. Productiv.:y P = 698*(RNLTOL** — 0.75) 1.29 0.50 0.01
P = T27*(RNMTOM** — 0.55) 1.32 0.38 0.02
Documentation DOC = 30.4*(L**0.90) 1.41 0.92 0.001 DOC = 49*(L**1.01) 2.68 0.62
DOC = 38.1*(NL**0.93) 1.52 0.885 0.001
DOC = 34.7%(DL**0.93) 1.45 0.91 0.001
DOC = 1.54%(M**1.16) 1.45 0.91 0.001
DOC = 4.82*(NM**0.99) 1.67 0.83 0.001 .
Project D = 4.55%(L**0.26) 1.36 0.55 0.01 D = 4.1*(L**0.36) 1.72 0.41
duration D = 1.96*(M**0.33) 1.37 0.54 0.01
D = 4.62*(NL**0.28) 1.33 0.61 0.01
D = 4.58*(DL**0.28) 1.34 0.59 0.01
D = 2.5%(NM**0.30) 1.38 0.55 0.01
D = 4.39%(E**0.26) - 1.37 0.52 0.01 D = 2.47*(E**0.35) 1.52 0.60
Staff size S = 0.24%(E**0.73) 1.38 0.89 0.001 S = 0.54*(E**0.6) 1.56 0.79

ing a normal distribution of the deviations from the es-
timation line, we may expect to find about two-thirds of
the items (ideally 68.27%) within the band +SE to
—SE about the line of estimation, about 95% (ideally
95.45%) within the wider band that includes + 2*SE to
- 2*SE, and practically all (99.73%) within + 3*SE to
—3*SE. The standard error of estimate is a general or
overall measure of the dispersion of all of the ¥ values
around the estimating equation but is often used to in-
dicate the dependability of specific estimates.

The coefficient of correlation expresses the degree of
relationship between the two variables. The coefficient
of correlation varies from +1 to — 1. The sign indicates
whether the two variables are directly correlated (pos-
itive) or inversely correlated (negative), while the mag-
nitude of the coefficient indicates the degree of associ-
ation. When there is absolutely no relationship between
the variables, » = 0. A perfect correlation between the
variables is indicated when the magnitude of r = 1.
The coefficient of determination (r**2) is the amount
of variation that has been explained by the line of re-
lationship; 1 — (7**2) is that part of the total variation
that has not been explained.

Some of the relationships are illustrated by diagrams
(for example, see Figure 1). Each + represents the
data from one of the completed projects. The solid line
is the estimating equation, or line of regression, com-
puted as described above. The broken lines represent
bounds of one standard error of estimate from the es-
timating equation. The estimating equation, standard
error of estimate, and coefficient of determination ~ are
shown in Table 1.

Those relationships also studied by Walston and
Felix are illustrated by a diagram comparing their es-
timating equation with the SEL equation. In Figure 2
each + represents the data from one of the compieted
SEL projects. The solid line represents the Walston—
Felix estimating equation. The two broken lines parallel
to the estimating equation represent bounds of one
standard error of estimate from the Walston-Felix es-
timating equation. The other broken line (with finer
dash structure) represents the SEL estimating
equation.

The derived estimating equations could be used in
the following manner. After the project estimates have
been computed, those estimates can be checked against
the equations that provide an independent estimate
based on past experience. Project personnel can then
compare these with their own estimates. For example,
assume that the size of a delivered software product is
estimated by project personnel as 100,000 lines of
source code and the effort has been estimated as 200
man-months. However, based on the equation in Figure
1, the estimated total effort for a 100,000-line system

V. R. Basili and K. Freburger

shouid be about 100 man-months. The significant dif-
ference between the two estimates does not necessarily
imply an error on the part of the project personnel, but
it does suggest that the assumptions and estimates lead-
ing to the project personnel estimate might be
reexamined.

The estimating equations presented here should be
considered initial approximations, applicable only to
the same environment that the subject projects are
from. As data for more projects become available, the
estimating equations should be updated and refined.

Effort

Effort vs Total Lines. The relationship between de-
livered source lines of code and total effort is shown in
Figure 1. The relationship derived from the data is

E = 1.38%(L**0.93). 03]

The standard error of estimate can be used to get
bounds on the predicting equation. For example, here
the standard error of estimate is 1.41, so the coefficient
of the exponential term shouid be multiplied by 1.41 to
get an upper-bound equation and divided by 1.41 to get
a lower-bound equation. This gives the equations £ =
1.95%(L**0.93) and E = 0.98*(L**0.93) as bounds of
one standard error of estimate from the estimating
equation (1). The coefficient of determination (r**2) is
a significantly high (at the 0.001 level) 0.93, indicating
(at least for these projects) that there is a high proba-
bility of a relationship between total effort and deliv-

Figure 1. Effort vs lines of code: E = 1.38*(L**0.93).

)
2

=
: ;L
4 e
s
1 S
‘ , A
j R
| Ve
A
v
~
iy N
@ b >
2 .
/
v e /4 s
= +
% '/ / //
z .
N e .’/
— .
o
sz . 4
o] »
2
T ™ - v
10 102 133

THOUSANDS OF LINES

Programming Measurement and Estimation

EFFORT (MHN-MONTHS)

100 108 102 103
THOUSANDS CF LINES

Figure 2. Effort vs lines of code.

ered lines of source code. This relationship is nearly
linear.
A linear fit of the data yields

E = 1.04*L + 2.04. 2)

For a linear fit, the standard error of estimate should
be added to the constant term. Thus, the standard error
of estimate of 16.1 would give the equations £ =
1.05%*L — 14.06 and E = 1.05*L + 18.14 as bounds
of one standard error of estimate. However, it is not sta-
tistically valid to report a standard error of estimate
directly from a least squares linear fit since the points
are not uniformiy distributed around the prediction
line. An additive standard error would be unreasonable,
since it would be too small for large projects and too
large for small projects.

Walston and Felix also found a nearly linear rela-
tionship between total effort and product size:

E = 5.2%(L**0.91)) 3)

with a standard error of estimate of 2.51. This places
the equation derived from the SEL data somewhat
below one standard error of estimate of the Walston-
Felix equation (see Figure 2). Equation (1) seems to
indicate that less effort is required than predicted by
(3) 10 develop the same amount of product. A possible
explanation is that the projects studied by Walston and
Felix were very diversified; that is, there were many dif-
ferent types of programs [5]. In the SEL environment,
however, the programs are almost all of the same gen-
eral type. and the project personnel have experience de-

veloping this type of software, implying there may be
less design effort required. In the Walston-Felix study,
however, many of the projects were of the large, com-
plex, one-time custom program type where the prob-
lems and their solutions are not well understood.

Effort vs New Lines and Developed Lines. Some
programming projects reuse code from previous proj-
ects in an attempt to reduce the total effort required to
produce a system. The relationship between total effort
and thousands of new delivered source code,

E =].58%(NL**0.99), 4)

is also nearly linear and has a high coefficient of
determination. _
A linear fit of the data gives

E = 1.55*NL + 1.19. 5)

Substituting developed lines for new lines, the equa-
tions become

E = 1.48*(DL**0.98), (6)
E = 1.46*°DL + 0.22. @)

(See Table 1 for standard error and coefficient of cor-
relation values.)

The relationships between total effort and total new
and developed lines of source code have high coeffi-
cients of determination, indicating that they could be
used to predict the total effort if the number of lines of
source code (either total or new) could be determined
beforehand.

Effort vs Modules. Another measure of program
size is the number of modules in the product. Total ef-
fort and the number of modules in the delivered product
are reiated as shown in Figure 3:

E = 0.65*(M**1.19). (8)

The relationship is not as linear as that between total
effort and delivered lines of source code, but the coef-
ficient of determination indicates there is a high corre-
lation between the total effort and the number of mod-

" ules in the delivered product. A similar relationship

exists between total effort and the number of new
modules:

E = 0.183%(NM™**1.05).)]

A new module is defined as a completely new module
or one used from a previous project and having more
than 20% of the module changed. A linear fit of the
data gives

E = 0.27*NM — 2.20. (10)

These equations may be more useful as estimating

10?

sosreaad

10?2
N,
\
+ N\
\ AN
\

g | SR
1 s S s
; A2
E | e
z s A
-
Ez. o
& < d
. s
- e
7 *
7 Ve
S
10 'loi)IO’

NUMBER OF MODULES

Figure 3. Effort vs number of modules: E = 0.65*
(M**1.19).

aids than (1) and (3) since it is more likely that the
number of modules (or 2 good approximation) is known
early in the project life cycle, particularly after the pre-
liminary design phase.

In all the above relationships between effort and size
there appears to be a linear relationship independent of
the particular size measure. This means that productiv-
ity remains relatively constant as the size of the project
changes. This may seem surprising, but it does support
the IBM Federal Systems result.

Productivity

Productivity is one of the most important factors in all
software estimating processes. Here productivity is de-
fined as the ratio of delivered source lines of code to the
total effort (in man months) required to produce the
product. For this environment, productivity, calculated
in terms of delivered lines L, new lines (NL), and de-
veloped lines (DL), is in the range of 600-700 lines of
code per man-month. It must be remembered, however,
that this productivity figure includes the design, code,
and testing phases only.

Productivity plotted against the ratio of new lines of
source code to total delivered lines of source code pro-
duces (see Figure 4)

P = 698*(RNLTOL** — 0.75). (11)

New code is defined as before. The relationship be-
tween the two variables suggests that productivity is

V. R. Basili and K. Freburger

lowest when there is no reused code. As the percentage
of reused code increases, the expected overall produc-
tivity increases. This reinforces the intuitive idea that
the reuse of a code should be less expensive than cre-
ating the code from scratch. The coefficient of deter-
mination (0.50) is significant at the 0.01 level.

The Walston-Felix definition of reused code is re-
lated more to size change above the original rather than
code added, which is significantly different from that
used in this paper, so a comparison of the two resuits
would be meaningless.

The relationship between productivity and the ratio
of new modules to total modules is

P = 727 RNMTTOM** — 0.55). (12)

New modules are defined as before. This relationship
exhibits the same behavior as (11). The coefficient of
determination is significant at the 0.02 level.

Documentation

Documentation is an important part of any software
project, and the costs of producing documentation are
a factor in the software estimating process. The size of
documentation is measured in pages. Here, documen-
tation is defined as the program design (handwritten),
test plan, user guide, system description, and module
description. The module description contains a one-
page description of each module. Figures 5 and 6 show
the number of pages of documentation vs thousands of

Figure 4. Productivity vs RNTOL: P = 698*(RNTOL**
—0.75).

-
2

PRODUCYIVITY (LINES/MAN-MONTH)

10?2

107! jgﬂ
RATIO NEW TO TOTAL LINES

4-12

Programming Measurement and Estimation

=
[=)

]
: , e
s e
- v i
i Ve
: g
] o
4
| .
|
L
S |
A vl
3
&]
z !
g
—_ i
zﬂ
e
S 75
(&) -
8 «
4
2
T y |
107 100 108 103

THOUSANDS OF LINES

Figure 5. Documentation vs lines of code: DOC =
30.4%(L**0.90).

delivered lines of source code and number of modules,
respectively. The correlation equations are

DOC = 30.4*(L**0.90), (13)
DOC = 1.54*(M**1.12). (14)

Both relationships are roughly linear and have coeffi-
cients of determination significant at"the 0.001 level.

Figure 6. Documentation vs number of modules: DOC =
1.54%(M**1.12).

1Y
44

10°?
s aensd L

w?

DOCUMENTRTION (PRGES)
S N N N

w0t 102 109
NUMBER CF MODULES

DOCUMENT TION (PRGES)

ot

100 w0t 102 109
THOUSANDS OF LINES

Figure 7. Documentation vs lines of code.

Walston and Felix also found that a nearly linear
relationship exists between the number of pages of doc-
umentation and the number of thousands of delivered
lines of source code:

DOC = 49*(L**1.01). (15)

Figure 7 shows a comparison of (13) and (15). The
SEL equation lies about one standard error of estimate
below the Walston-Felix equation. Part of the differ-
ence may be explained by the fact that Walston and
Felix included in their definition of documentation such
items as flowcharts and source program listings, which
are not inciuded in the SEL documentation page
counts.

Documentation as a function of each remaining size
measure, new lines, developed lines, and new moduies
is

DOC = 38.1*(NL**0.93), (16)
DOC = 34.7*(DL**0.93), (17
DOC = 4.82*(NM**0.99), 1%

respectively. Again, notice that these relationships are
approximately linear. The coefficients of determination
are significant at the 0.001 level.

Duration

The problem of determining the duration of a software
project is difficult and important. The relationship be-
tween project duration (in months) and number of
thousands of lines of source code is shown in Figure 8,

~
o

.
-

DURRTION (MONTHS)

T IR |
100 10! 102 109

THOUSANDS OF LINES

Figure 8. Duration vs lines of code: D = 4.55%(L**0.26).

and the relationship between duration and the number
of modules is shown in Figure 9. The equations for
these relationships are

D = 4.55*(L**0.26), (19)
D = 1.96*(M**0.33), (20)

respectively. Walston and Felix found a nearly cubic

Figure 9. Duration vs number of modules: D = 1.96*
(M**0.33). i

-~
o

4

DURATION (MONTHS)

10! ‘o? 10?
NUMBER OF MODULES

V. R. Basili and K. Freburger

relationship between project duration and delivered
code: ’

D = 4.1%(L**0.365). 210

This relationship is quite similar to that found for the
SEL data (see Figure 10).

Reusing code or modules may have an effect on pro-
ject duration. The relationships between project dura-
tion and new lines of code in thousands, developed lines
in thousands, and new modules are

D = 4.62*(NL**0.28), (22)
D = 4.58*(DL**0.28), (23)
D = 2.5%(NM**0.30), (24)

respectively. These relationships are very close to (19)
and (20). As one might expect, calendar time increases
at about one-third the rate of size. This is owing to the
fact that calendar time on larger projects is a major
constraint and more people are required to meet the
calendar deadlines.

Project duration as a function of total effort is shown
in Figure 11. The regression equation is

D = 4.39%(E**0.26). (25)

Walston and Felix also found that a cubic relationship
exists between project duration and total effort:

D = 2.47%(E**0.35). (26)

Equations (25) and (26) are very similar. A comparison
of the two estimating equations is shown in Figure 12.
The SEL equation lies about one standard error of es-

Figure 10. Duration vs lines of code.

102

P |

\

2
-
Z=
1
g] +
-
éé
/
1 ~
e
o
(=)
- T |~ 11
00 10} 102 0

THOUSANDS OF LINES

4-14

Programming Measurement and Estimation

-
2

PP |

1

OURATION (MONTHS)

169

T

109 llO‘ 102 e
: 10

EFFORT (MAN-MONTHS)

Figure 11. Duration vs effort: D = 4.39*(£%*0.26).

timate above the Walston—Felix equation. More will be
said about this relationship in the next section,

Staff Size

The staff size used for the development of a software
product depends on several factors, including the de-
velopment time allowed for the project, the amount and

Figure 12. Duration vs effort.

102

Y

\

\

10!
aaad

OURATION (MONTHS)

100

100 101 102 109
EFFORT (MAN-MONTHS)

10!

O |

100

STAFF SIZE
PR |

10t

100 'llJ‘ 1103 '10’
EFFORT (MAN-MONTHS)

Figure 13. Staff size vs effort: S = 0.24*(E**0.73).

difficulty of the code to be produced, and the manpower
loading rates that can be achieved [10]. The equation
relating average staff size (total man months of effort
divided by the project duration in months) and total ef-
fort (Figure 13) is

S = 0.24*(E**0.73). (27)

The coefficient of determination indicates a good rela-

Figure 14. Staff size vs effort.

10}

4

1e¢
sl

SIAFF SIZE

10-!

108 10t 102 101
EFFORT (MAN-MONTHS)

tionship between these two variables. The Walston-
Felix equation for this relationship is

S = 0.54*%(E**0.6). (28)

Again, this equation is very much like (27). Figure 14
shows the SEL estimating equation and (28) together.
The SEL equation lies about one standard error of es-
timate below the Walston-Felix equation. The Wal-
ston—Felix equation shows consistently higher manning
levels than the SEL equation, but the Walston-Felix
equation relating project duration and total effort shows
consistently shorter project durations for the same
amount of expended effort (Figure 12). Thus, the
shorter project durations in the Walston—Felix study
seem to have been gained by higher staffing levels.

CONCLUSIONS

The authors belicve they have been able to help validate
the basic relationships reported by Walston and Felix
[5] in their original study. Clearly, the equations’ coef-
ficients are different for different environments, as one
would expect, but there is a consistency in the way the
SEL equations relate to the Waiston-Felix equations.

On the other hand, the SEL data could also be used
to support the linear relationship between effort and
lines of code described by Jeffery and Lawrence [4].
Their data deal with business applications, predomi-
nantly in COBOL, ranging in size from 100 to 4500 lines
of code. Their effort includes detailed design, coding,
and testing. The SEL data lies between the Jeffery-
Lawrence data and the Walston-Felix data with re-
spect to size.

Whether the relationship between effort and lines of
code is modeled by a linear equation (E = a*L + b)
or an exponential equation E = a®(L**b), it is closer
to linear than one might expect. For example, it has
been hypothesized [11] that the relationship is more
exponential and of the form

E = a*(L**1.5).

The basis of this hypothesis is that as the problem gets
larger it becomes more difficult to develop the solution,
and so the effort per line of code shouid increase. Im-
plicit in this assumption is that lines of code is a mea-
sure of function complexity and that the relationship
between the two is linear.

However, it is possible that this last assumption is
false. As the problem increases in size and complexity,
the size of the code may increase at an even greater
rate. This increased rate is due to subfunction duplica-
tion and the looseness of the code. For example, as the
problem increases in size and more people are involved
in the development, it becomes more difficult to recog-
nize duplicate function. Much of this duplicate function

V. R. Basili and K. Freburger

may be simple routines that each programmer redevel-
ops for himself. As the complexity of the function in-
creases, as it may very well do with size, there may be
a looseness of code, a tendency to write a longer, sim-
pler algorithm to keep the system simple. There are
limits to the amount of complexity an individual can
handle. It is also often true that there tends to be more
overdesign of subprograms. The insecurity caused by
the pure size forces the programmer to overdesign for
safety, which results in more code per function. All of
this extra code creates a larger system whose relation
to the problem grows exponentially with respect to the
size of the problem. Thus, the equation

E = a*(function®**b),

where b is about 1.5, may be true, but when compared
with size measured as lines of code b is closer to 1. Un-
fortunately, we are unable to measure function and
complexity accurately enough to verify this hypothesis.

Some comments on the basic relationships seem
worth making:

a. Based on the SEL data, it appears that developed
lines and new lines are a better estimate of effort
than total lines. This is intuitively satisfying since it
is closer to the notion of expended effort.

b. Even though the measure of productivity is rather
primitive, there is a tendency to believe from our
data that reusing code is cost effective. Because of
different ways of counting reused code, we were un-
able to compare our data with that of Waiston and
Felix.

c. The use of modules as a measure of effort works
about as well for the SEL environment as various
measures of lines of code. Since in many cases it is
easier to predict the number of modules than iines
of code, this provides a viable approach to
prediction.

d. Productivity in environments where the design is
better understood may increase by a factor of 3 or
4,

e. On large projects, calendar time is a major factor.
It increases with the cube root of effort.

f. The relationships between documentation and prod-
uct size, between duration and effort or size, and be-
tween staff size and effort are reasonably supportive
of the Walston-Felix relationships.

This approach to estimation is empirically based,
and the data are highly dependent on the local environ-
ment. It is an indicator of how we currently do business
and defines the common aspects of the developmental
environment. As new projects are added to the data
base, the equations will change and the base relation-
ships will change as the way we do business changes.

The differences between the actual data and the pre-

Programming Measurement and Estimation

dicted values of the equations can be explained by vari-
ations in the environmental factors for the different
projects within the SEL, including methodology and
constraints. We can think of the basic lines of code and
effort as capturing the essential SEL environment and
the individual projects as requiring modification due to
specific variations within the project environment. This
approach was used by Walston and Felix in their pro-
ductivity index and by Boehm ([12]) in his COCOMO
model. We are currently investigating this approach by
developing a metamodel that will be adapted to the
local organizational and project environment by isolat-
ing local SEL environmental factors.

ACKNOWLEDGMENTS

The authors are grateful to Frank McGarry of NASA/Goddard
Space Flight Center, Jerry Page and Victor Church of Computer
Sciences Corporation, Claude Waliston and Charles Felix of IBM
Federal Systems Division, and John Bailey of the University of
Maryland for their comments on drafts of this paper and for sup-
plying data needed for this paper.

REFERENCES

1. V. R. Basili, M. V. Zelkowitz, F. E. McGarry, R. W.
Reiter, W. F. Truszkowski, and D. L. Weiss, The Sofi-
ware Engineering Laboratory, Tech. Rep. TR-535, De-
partment of Computer Science, University of Maryland,
May 1977.

2. V. R. Basili and M. V. Zelkowitz, Analyzing Medium
Scale Software Development, Proceedings of the Third

10.

i1

12.

International Conference on Software Engineering, At-
lanta, Georgia, May 1978, pp. 116-132.

. K. Freburger and V. R. Basili, The Software Engineer-

ing Laboratory: Relationship Egquations, Tech. Rep.
TR-764, Department of Computer Science, University
of Maryland, May 1979.

. D. R. Jeffery and M. J. Lawrence, An Inter-organiza-

tional Comparison of Programming Productivity, De-
partment of Information Systems, University of New
South Wales, 1979.

. C. E. Walston and C. P. Felix, A method of Program-

ming Measurement and Estimation, /BM Syst. J. 16, 1
(1977).

. E. Chrysler, Some Basic Determinants of Computer

Programming Productivity, Commun. ACM 221, 6
(1978).

. J. R. Johnson, A Working Measure of Productivity, Da-

tamation 23, 2 (1977).

. V. LaBolle, Development of Equations for Estimating

the Costs of Computer Program Production, System De-
velopment Corporation, Santa Monica, California,
1966.

. E. A. Nelson, Management Handbook for the Estima-

tion of Computer Programming Costs, System Devel-
opment Corporation, Santa Monica, California, 1967.
L. H. Putnam, A General Empirical Solution to the
Macro Software Sizing and Estimating Problem, JEEE
Trans. Software Eng. SE-4, 345-361 (1978).

F. P. Brooks, The Mythical Man-Month, Addison-Wes-
ley, Reading, Massachusetts, 1975.

B. W. Boehm, Software Engineering Economics, Pren-
tice-Hall, Englewood Cliffs, New Jersey, 1981.

EVALUATING AND COMPARING SOFTWARE METRICS IN THE

SOFTWARE ENGINEERING LABORATORY*

Victor R. Basili and Tsai-Yun Phillips
Department of Computer Science
University of Maryland
College Park, MD 20742

*Research supported in part by National Aeronautics and Space Administration
grant NSG-5123 to the University of Maryland. Computer time supported in
part through the facilities of the Computer Science Center of the University
of Maryland.

EVALUATING AND COMPARING SOFTWARE METRICS IN THE
SOFTWARE ENGINEERING LABORATORY

I. Introduction

There has appeared in the literature a great number of metrics that
attempt to measure the effort or complexity in developing and understanding
software [1]. There have also been several attempts to independently vali-
date these measures on data from different organizations gathered by differ-
ent people [2]. These metrics have many purposes. They can be used to
evaluate the software development process or the software prpduct. They
can be used to estimate the cost and quality of the product. They can also
be used during development and evolution of the software to monitor the
stability and quality of the product.

Among the most popular metrics have been the software science metrics
of Halstead, and the cyclomatic complexiﬁy metric df McCabe. One question
is whether these metrics actually measure such things as effort and com-
plexity. One measure of effort may be the time required to produce a product.
One measure of complexity might be the number of errors made during the
developmentvof a product. A second question is how these metrics compare
with standard size measures, such as the number of source lines or ;he number
of executable statements, i.e., do they do a better job of predicting the
effort or the number of errors? Lastly, how do these metrics relate to each
other?

One simple way of checking the relationship between errors or effort)
and the various metrics is to examine the plots of the variables against one
another and correlations between the various variables. This provides us
with a first look at attempting to shed some light on the questions posed and

the relationships that may hold.

One of the goals of the Software Engineering Laboratory [3] has been to
provide an experimental data base to be used for examining such relationships
and providing insights into attempting to answer such questions. The Software
Engineering Laboratory is a joint venture betwen the University of Maryland,
NASA/Goddard Space Flight Center, and Computer Sciences Corporation.

The software being analyzed is ground support software for satellites.
The systems in this paper consist of 50,000 to 110,000 lines of source code.

The source code is predominantly FORTRAN. Anywhere from 10 to 60 percent of

the code is reused from previous systems. There are between 200 and 500 modules

in each system where a module is defined as a FORTRAN subroutine. The average
staff size ranges from 5 to 8 people, including support personnel.
II. The Data

Data is collected in the Software Engineering Laboratory that deals with
many aspects of the §evelopment process and product. Among the data collected
is the effort to design, code and test ﬁhe various components of the systems
as well as the errors committed during development. The data collected is
analyzed to provide insights into software development and to study the effect
of various factors on the process and product.

One standard problem in data of this kind is its validity. Unlike the
typical controlled experiments where the projects tend to be smaller and the
data collection process dominates the development process, the major effort
here is the software development process,and the data collectors must effect
minimal interference to the developers.

This creates potential problems with the validity of the data. For
example, suppose we are interested in the effort expended on a particular
module and one programmer forgets to turn in his weekly effort report. This
can cause erroneous data for all modules the programmer may have worked on

that week. Another problem is how does a programmer report time on the

4-20

integration testing of three modules? Does he charge the time to the parent
module of all three, even though that module may be a small driver module?
Clearly that is easier for him to do than to divide the time between all three
modules he has worked on.

How does one count errors? An error that is limited to one module is
easy to credit. But what about an error that required the analysis of ten
modules to determine that it effects changes in three modules? Does one
associate the error with all ten modules or the three modules? Does one
associate one third of an error with each of the three modules or a full error
with all three? It is clear that the larger the system the more complicated
the association. All this assumes that all the errors were reported. It is
common for programmers not to report clerical errors because the time to fill
out the error report form might take longer than the time to fix the error.

In a commercial program development environment, the errors are not seeded
so they are not known éo the‘analysis beforehand. The programmers are not
watched with respect to the time they put in and report; the full development
process may take a year. A class of problems not expected in the controlled
development environment is common here and can create problems with obtaining
valid results. |

The data discussed in this paper is extracted from several sources. First,
there is effort data which is taken from a form called the Components Status
Report. This report is filled out each week by the programmers on the project.
They report the time they spend on each component in the system broken down
into the basic phases of design, code and test, as well as any other time they
spend on work related to the project, e.g.;tdocumentation, meetings, etc.

A component is defined as any named object in the system. A component
could be a FORTRAN subroutine, a COMMON block or a set of subroutines that
makes up a subsystem. The effort data analyzed in.this paper is extracted

from the Component Status Reports.

Vg

Another form, filled out weekly by the project management, is the Re-
source Report Form. This form represents accounting data and records all time
charged to the project for the various project persomnel. It is not broken
down by activity. This data is used in section IV of this paper to validate
the effort data on the components.

The varous metrics computed on the source data are calculated automati-
cally by a program called SAP [4] which was developed specifically for the
Software Engineering Laboratory by Computer Sciences Corporation. Data col-
lected by the SAP program consists of various software science metrics, such
as the Halstead E metric used here, the number of decisions (similar to the
McCabe cyclomatic complexity metric), the number of source statements, the
number of executable statements and the number of call statements. These
metrics are computed at the component level. The number of source lines con-
sists of the total number of lines of source text, including comments and data
statements. The number of executable statements consists of only the executable
FORTRAN statements, excluding comments and data statements such as COMMON

declarations. Typically, the number of executable statements is about 50

[ald

percent to 60 percent of the total number of source lines.

The error count discussed here is collected from a form called the Change
Report Form which is filled out each time a change is made to the system.
These reports are normally not filled out uﬁtil testing has begun. The error

count consists of only those changes which have been clagssified as errors.

Nonerror changes are not discussed in this paper.

III. A First Pass

We began by examining four projects which we shall call A, I, P and S.
For each of these projects we considered the aspects of the development

separately and in combinations. These phases are the design, coding, and testing

phases. 1In considering all available components, A had 111 components, I had
55 components, P had 229 components, and S had 118 components for which we
had some effort data and a software science E measure. It turned out that the

union of coding and testing, as well as total effort, gave us the best results:

Project Design Code Test Design & Design & Code & Test Total

Code Test
A .4563 .4700 .4212 L4775 . 5444 .6380 x.6599
I -.0503 .0322 ‘ .0094 .0931 .0942 .0877 .0500
P .3817 .4316 .3946 .4301 L4296 4296 .4660
S .3658 .3957 .4015 4157 - .4688 ~ .4688 .5459

The lowest correlations between effort and the E metric were in project I.

As it turms out, project I had the most reused code from previous projects.
That is, modules from previous projects were taken wholly or slightly modified
for use in system I. Since this factor was obviously affecting the relation~
ship,‘we classified all the modules studied as either newly developed, modi-
fied, or old. We then recalculated the relationship between effort and the E
metric using only newly developed components. The results are given below for

total effort only.

Project ## of Components Total
A 101 .6774
I 31 .4162
P 178 .6230
S 106 .4580

The correlations here are higher, as expected, because of the better data.
We were interested in whether other measures, such as lines of source

code and executable statements, provided better relationships as well as the

»

i\

relationship between the E metric and these other measures. We were also in-
terested in whether other factors affected the correlations. For example,
what effect would a division of the modules by such factors as size, complexity
and testing level have?

First, a study of all 416 components across the four systems yielded the

following correlations:

E Source Lines Executable

Statements
E . 7497 .8031
Actual Effort .6384 . 5795 L4949

Next, division of the components by the amount of time spent in develop~-
ment effort showed better correlations for those projects in which more time
was spent. The division by the number of lines, however, did not show a
clear trend. This provided us with the idea that some of the effort data might
be missing at the component level and, therefore, we should eliminate those
components for which the effort data was not good enough. The results of this
validation are reported in the next sectionm.

The separation of components by complexity was based upon an evaluation
of the complexity of the particular component by the programmer. Components

were rated as hard, moderate or easy. In general, higher correlations between

~effort and all other variables grew as the subjective complexity rating grew.

The results of separating the components by various subsystems that were
common across the projects, as well as by various testing levels (such as tree
chart subsystem levels), seemed inconclusive. These variations will be examined

again in light of the data validation discussed in the next section.

IV. A Second Pass

Because the correlations between effort and the various size metrics were
better for those components with greater effort, we became concerned that the
results might be due to poor reporting of effort data. To check this, we
proposed a validation check on the data, providing each component with a
validity rating. TFor each programmer on a project, we examined both the total
time reported on the Component Status Report, as well as the total time charged
to the project. We then placed components into categories depending upon the
percent of time reported by the programmer on the Component Status Report
compared to the percent of time charged to the project, and gave the components
an accuracy rating. For example, if all the programmers working on component X
reported at least 90 percent of their total resource time on the Component
Status Report, then X is in the 2 90 percent category.

Besides examining the E metric, the source lines and executable state-
ment counts, we also analyzed the cyclomatic complexity metric and the number
of calls contained within a component. The correlation between actual effort
and these complexity metrics is given in table 1(a) and (b) for those projects
with greater than 90 percent accuracy and greater than 84 percent accuracy.
Figures 1, 2, 3, and 4 provide piots of the data points at the 84 percent énd

90 percent accuracy levels for source lines and the E metric with effort.

The correlations between the various factors appear to be better on the
validity rated data than on the full data and appears to do better at the 90
percent validity rated level than at the 84 percent validity rated data. For
this feason, we believe that the validity rated data is more reliable than the
earlier data.

Since complexity is also meant to measure the number of errors associated

with the development of a project, we compared the various complexity measures,

4-25-

e

Pearson Correlation Coefficients

> 90% Reported Programmers

Effort Error Halstead XQT Source McCabe -~1 Calls
Effort 1.0000* ,6346* .6612% .7974% [7583% .7399%* .6033*
Error .6346*% 1.0000*% ,5432% .5837% .5576%* .5592% .4861%
Halstead .6612*% ,5432*% 1.0000%* .9160% .8706%* .8906* .8818*
XQT .7974% . 5837%* .9160%* l.OOdO* .9513%* .9777% .8258%*
Source .7583*% ,5576%* .8706*% ,9513*% 1.0000% .9519%* .8726%*
McCabe -1 .7399% ,5592% .8906* ,9777% .9519% 1.0000%* .8110%*
Calls .6033*% ,4861% .8818* ,8258%* .8727% .8110%* 1.0000%*

cases = 37 (data points)
.001

mn

* - significance

Table 1(a)

Pearson Correlation Coefficients

Across Projects (= 847 Reported Programmers)

Effort Error Halstead XQT Source McCabe -1 Calls
Effort 1.0000* .6227*% .6719% .5094% . 6025% .3261% .6666%*
Error .6227*% 1.0000*% ,5028% .4289*% .4891%* .3045%* .6431%
Halstead .6719*% ,5028* 1.0000% .8301% ,7565% .6540% . 8044%
XQT .5094* .4289% ,8301* 1.0000% .8061%* .9116% .7703%
Source .6025*% .4891*% ,7565%* .8061* 1.0000% .6533% .7759%*
McCabe -1 .3261*% .3045* ,6540% .9116* ,6533% 1.0000%* .5990%*
Calls .6666* ,6431* ,8044%* .7703* ,7759% .5990%* 1.0000%

cases = 116 (data points)
* — significance z .001

Table 1(b)

including the total effort required for development with the number of errors.
An error was associated with a component if it was isolated to that component
or the component was one of several involved in the error. Table 1 also gives
the correlations between the error count and the various complexity metrics.
Figures 5, 6 and 7 provide plots of the data points at the 84 percent accuracy

level for actual effort, source lines and Halstead's E metric compared with
the error count.

Another question is whether we can predict or account for the actual
effort or error count using the metrics discussed so far. In an attempt to
study this problem we applied a forward multiple regrmession analysis using the
other metrics to account for effort. Using the data for effort at the 84 percent
validity level, we came up with the following results. The analysis brought
in the variables in the following order: executable statements (XQT), number
of errors (ERR), E metric (E), cyclomatic complexity (CC) and source lines.
The number of calls was never included. Table 2 shows the amount of variation
explained (Rz) as each new factor is included in the equation. Based on a .05
level of significance- in using the last variable included, the regression
equation generated was

Effort = 19.9 * XQT + 107.5 * ERR - 1.2 * E - 24.7 CC + 250.5

Dependent Variable . . . Effort

variables RZ

Executable Statements . 6358

Error Count .6792

E .7110

Cyclomatic Complexity - . 74571

Source Lines . 74966
Table 2

There has been some work done-in isolating the individual programmers.
There is some evidence that a better correlation exists between the effort or
error count of an individual programmer and a particular complexity metric.
Some work will also be done in examining specific error classes and complexity

metrics.

10

Further validation of the data needs to be done im examining some of
the outlying points. For example, a point with a high number of source lines
but low effort rating might be a COMMON block and therfore eliminated from
the study of control flow components.

v. Conclusion

There is hope in using commercially-obtained data rather than experi-
mentally-obtained data to validate complexity metrics. It is possible to
systematically clean up the data and study the relationships between effort,
error counts and the wvarious complexity metrics. We have shown that some
relationships and accountability do exist between various complexity metrics,
effort and error counts. The results tend to get better as the data used

appears to be more reliable.

28

>
!

(1]

[2]

(3]

[4]

References

Halstead, M., Elements of Software Science, Elsevier North-Holland,
New York, 1977

McCabe, T. J., "A Complexity Measure,” IEEE Transactions on Software
Engineering, 1976, 2, 308-320

Gaffney, John and Heller, Gilbert L., "Macro Variable Software Models
for Application to Improved Software Development Management,'
Proceedings of Workshop on Quantitative Software Models for Reliability,
Complexity, and Cost, IEEE Computer Society

Chen, E. T., "Program Complexity and Programmer Productivity,"
IEEE Transactions on Software Engineering, May 1978, Vol. SE-4, No. 3,
pp. 187-194

Curtis, Sheppard, & Milliman,'"Third Time Charm: Stronger Prediction
of Programmer Performance by Software Complexity Metrics,” Proceedings

of the Fourth International Conference on Software Engineering, 1979,
pp. 356-360

Feuer and Fowlkes, "Some Results from an Empirical Study of Computer
Software,' Proceedings of the Fourth International Conference on
Software Engineering, 1979, pp. 351-355

Basili, V., "Tutorial on Models and Metrics for Software Management
and Engineering,”" IEEE Computer Society, IEEE Catalog No. EHO-167-7, 1980

Basili and Zelkowitz, "Analyzing Medium Scale Software Developments,"
Third International Conference on Software Engineering, Atlanta, Georgia,
May 1978

0'Neil, E., "The Static Source Code Analyzer's Users Guide," CSC
TM-78/6045, 1978

10000° $9OuUedTIFUBES
0£9¢€"* "ANMV aaenbs y
. GZ09°* :(¥) “uworze[R110)
I9A9T £deandoe %hg
Sauy] 3danog 1 °andia
0g*0224 09°9041 02°688 Ls*Cle 07°8%¢ 0u®r%9 Ny*e2s veeery 0s°v62 0%°*18i 00°99

T T S bl DRttt R S Py Y R E LT rpuiy epuhiir NPy S U N |

] | { 1 2 . v Y. esen w284
1 I v 1 v (XXX 2 2¢20 v 2 . {
1 » | 1 I 2 wve » we o {
1 1 X v 2 . v v 2§80y ¢ . . 1
f I v XY 1
'Y I . . » P4 . ¢ 2 +
1 1 . l
t 1 . o 1 M 1
I 1 1 v v . i
1 I (X .y 1
+ I . . . +
1 1 I
{ . { . 1
| | . |
3 1 +
{ i Y e i
e ; {
i i I]
+ 1 1 +
I | | |
I I I 1
1 I I . I
! I | i
i P i !
: | } !
I _ _ _
—n|0l|||l|||v||l|||l|||l||luaunnltlmclltlll||l|clv|||laa|n|lt ||||| wmalallttlallnnnollllnlllltaulluocan—
i _ * |
| I . [l
1 1 I 1
¢ 1 1 +
!] { ’ i
1 1 I i
i 1 1 i
¢ { I +
1 {] 1
1 I t [}
1 { { 1
m : ! _ o

R R e Lk kT R Rk B Rl 2 e i T S ol F gy W PPy

Q0°99

OQ.Wn—-
08°21c?
0c*922¢
09°6589
[{IVAR X% 29
07°9049
08°5252
02°¢5y9
G9°9224

0c*onaul

310332 Tenioe

4-30

OISO - 4

¢ @an31d

10000° t9ouedTJTUdYS

SISy’
61.9°

"ANMV aienbs y
:(¥) uworjeyaaao)d

TeaaT Ldoeandoe %ug

00°089Y 00°2129 00°yy.€ 00°922¢ 00°8082 00°0%¢2 0) 2.8t 00°5071 00°9¢6 00°g89Yy 00°
L D T el Tt ettt B e e T e D R B R tatetad 2
+ 1 £ LI 40
4 1 . sseer § S8
1 [} v 226
1 2 2 *2 sveh92
1 . v ¢ sy w
+ L] [} Qud
I .
1 2 .
i . [
1 v . ¥y o
+ [[. 4
1
* v]
f . v
+ +
1 -
1 ' 1) N llllllllll—
i ~ 1
* +
I
i !
. .
4 +
.
4 +
I [} 1
I :
] - -
2 +
| {
I
. I
I
i X
| ﬁ i
" ! “
+
{ | '
1 1
I I
I 1
+ . 'S
L] []

I

L R e B e e R e R LD L g S R R Rt DR L R B e a3

00°99

0y°eftl
nge2tez
02°982¢
oo.oan
00°£€YS
09°90S9
0862412
02°£s98
09°9226

00 *o0g0t

3310332 Tenioe

4-31

83Uy 93anog € 2anJfd

0gate 00°878 ou*29L vu*9Ly 0u°0ess 0u*20¢ 0u‘gLY

10000 {90ueOTJTUBLS
1646° "ANMV axenbs y
€86L° :(¥) uvorjeTaaI0)

T3A8T Loeanooe g6

00°2¢¢ Qu°992 00*u9L 00°%¢2

»ooilonnloolollonlcnonlononouo.ulononoonolonco-atloiuut.cllnonnnloauauo||||¢|l|n¢annuolauu.a|||¢o|||¢.
+ { 1 e
I i
1 v . 1
1 .]
1 . . 1
4 L L +
1 v I
1 . . I
[{ . . v 3
1 . I
+ . 'Y
1 . oy i
I I [X) I
] I | PR i
+ 1 1 +
1 1 1 “
§ 7T e R "1 i
I 1 I . . 1
+ 1 . 1 . *
I n I 1
I 1 1
1 I I . 1
I I ! 1
* I H +
1 . i 1 I
1 1 . I I
1 I I I
: _ - "
i i i i
~cvlllullllala|||||||t|l|lb|||n|:i|mnanlculltlnllllcluul|||n|.nuc'om0o||nnlulllllcncnulunlaulnullna'»|~

+
i | _ :

1
m | | i

I

. ! ! :
| | “ |
le I ! 1
I 1 4 I
+ 1 I +
i [" _
I I I —
M _ c !

OOIIIOIIIOQIIIIQllllollllollllollllollllolll'olt'loIlllvllllollll0llll¢illtollllollllollllo'll!ollll

+

0G*s21

07°229

Ju*€le

02°S101

0yt

07°%00t

0z2°0n2e

et Lan2

02°§022

oucnrLe

310339 Tenioe

4-32

T0000° :o0uedTITUlIg
TLEY” uAva axenbs y
<199 :(¥) uorjeraiio)

19491 4AdBANDOEB %06

DFIIOR - 1 % 9AN3Td

09 s9si 06°30%14 ou®2set s Seult Qu°ete 0s°292 0L°*92) as* w9 Cu®its 0S°9S4 00°*
Mt e At e i it e e el R e e R Y 10 AL Gt oSl S Ut
¢ 1 1 o+
4 " 1 I
I 1 vel
I 1] v 1
1 I 1 2ol
3 I 1 . .
1 I 1 v 1
1 1 i . ve |
i 1 1 v ve |
t 1 I v 1
+ I 1 . .
1 t 1 v 2 1
I I 1 e 1
1 1 1 I

. .
m | | -
. S P, S R SR -------.---,m

v .

] ! i i
+ | I . . +
] 1 1 1
. 1

_ |] I
1 1 4 i
+ I { +
I v [

— “ 1 . i
I 1 1 1
!] 1 1
] . +

i I i i
I 1 1 1
_lllnllll»nllcvlalollil|||||||||ll||'|||||||l|||l|i|||lllllallllalltacvnllnlnalnlnt||‘|||ct|l||||tl|||—

1

' | I '
| !] {
I
_ { | I
1
+ 1 I +
1 I I 1
1 1

I | i i
1 I 1 1
4 1] +
1 1

| w “ i
1

“ 1 I 4
[I I . t

Qllllollltolllloll|l0|lll¢0ll$¢lll|oll'lolli'»llllOllllollll#llllollllsllllollll0lll|0'lll¢llll¢llllo

ou*92t

0922

08°31e

02°s1ot

D2ty

00ds001

079061

0g§*0022

D2%¢L492

0)*ge22

IVASILTIRY

31310339 Ten3oe

4-33

’ T0000"* :9ouedf JFusys
LLge” "Ammv aienbs ¥
L2729 :(4) uoriefa110)

194a9T Loeanodode yyg

310337 TenIdy G °oIndTd

0Q°0080L o07°92L6 02°L$98 Oy 6282 07°9057 00°:€9S G2 *65¢Y UTAR 241 n2*2ee Cy°esit 03°9¢

e e e e T R e R R E Ry R il bt R T e R LR RS el Sebededef Stttk Sateted]

SY0Ydd 40 JIIWAN

+ | 2e s1TuSLLY M Go*
“ v “ 20 eee m..nnonmunm.“
I
“ v . . 1 » e o2e0vs v 29+ 22 1
¢ i I L &V A
1 { 1
I ve ¥» v v 1
i i
. . »
+ m 0oy
— ¢ v v I
1
1 . 1 .
+ + DIy
“ 1 1
o o o o e e i e = e 2 o = = S = 2 e " 2 8 o A = ke = e |
I I]
I 1 1
¢ I + 00°3
1
{
{
I
+ ¢t 00°0L
1 W
1 1
1 1
1
+) + 00°2L
1 I
i |
! “ “ !
¢+ Dp*vl
1 I I
1 I 1
1 1 {
1 1 i
+ 1 ¢ 00°9y1
1 1 I
] 1 1
I 1 I
1 ! 1
+ 1 1 ¢ 0d°«t
1 1 1 1
1 | I
1 , I 1
I I 1
te . 1 + 0Q°O2
L D el b ey e S B R it Sl St et e bt Dttt SRt TR T R il RLL o B LY B

0g°f920t 06°63L6 0s*"otLLe 0L°%£702 02°6966 UE*963y 06°229% Cs*46%22 0L°9291 02°209
433 (5504Iv) 443 Mzzoc- 40 UVYI43ILLVIS
(Ot AON §1L = 31v0 NGIQlvIN)) AWVNON ERb Y

€ 39vd L8 AON ¢} NOISSTIHDIY A4 INK

4-34

10000° :90uedTITUBYSg
c6¢ecC” "ANMV a1enbs y
068%° :(d) uoFIE[3110)

12437 Loeandoe Yyg

S9U] 991nog 9 @an314
09°022\ g?°901L 02°684 ogegl@ 0%°u8s¢ 00°:%9 0?7428 Q¢ 2Ly 08962 02°434 0099
L R i T T T T S e R B e ek R R R R et bl LTy T
. “ . " v 5 v 2 elei(¢esf? L2 2 2
“ . v e 2 2w @ efLe2C e2vs2 g L
I .
. “ 2 v o 1 2v sceves vy 0 oxe 22 ¢
! !
1 ¢« v I« v v .
{ 1
_ v — . @
{ I
1) I 1 . [} .
| i
1
I 1

- - P - - - e W A e = e s D P e e - o S R W W e SRR 8 e T e Y e R W S T b m - e - D - = e W -

T e S e GmGLe, G AR S Gy S § GO Gugt Gmius) Sy S S SRR gt Py
et S S e Sty Gt Sk g 0 | Pty S SO EGrue Sy P SO oo

ARl R R e A S R L e R R el LY R LR i ettt Dbl il Rt ToT Py SRy N GUpIN GUpNPEN NI Y

OF P i PRG0Sy S g A S o Gt WEPTA Siep Dum i Smtam o B Sy G St g e P S Gt Sy 9 0 Sy
O et gt mmp mOmS et B Pue St B G PG SAEER s Rt St s) P S ot Pmapd St o GueOE o P e S g By St o SO gt

0i° Y

009

Du*4

Jueot

0G* 24

g9t

Qu*2l

0u°® a1

0)e+a:

s101xe 3jO 19qunu

4-35

10000° . $92uedTJFudys
8ISC" ."Awmv aaenbs y

870G " 1 (¥) uorieraxio)

19A9T AdBINDOE %Ky

JFAION - 4 [@in3Td

CQa39Y N0 2Ley 0U°*99LS 0L I2e% QL BU42 NL*u%2 Cutétal nyc ey Dutvfo 20°89% ()]

L T B R e R e o L Ay TR TR LR R R L DN R R D e Rt Rk T 2 P Sy O Spa i PO L

m " “ v v n.woom
_ * _ ¢« o 2 2 v %, 2 mnrc_
Is . “ . " . ¢ Qe 251261
+ *
_ m m : SRR
1 1 1) . . m
: ! | i
" “ “.) [“
! _ ! o
I | 1 I
f e e e e e e e e e — e e me e e e mce e mmcccmmscmmemmm e |
i H { i
¢ I 1 ¢
1 I 1 1
| | { |
: i ! H
] | | |
i i | i
i | _ m
.. S |
! | { !
i | i |
I i [. |
i i | i
i i i i
1 I 1 1
+ I I +
i i { {
i] | |
H . 1 1 ¢

AL R R el B L ek B R R R Dbl ik e R R O e Eatal Lot T T R Py SRRy SRy (PRI

gou*

03

no*y

0G*Y

0u*3

0u°3s

w2

Qu*Il

oot

Qu*n?

§10a2319 JO J9qunu

4-36

" SECTION § — SOFTWARE ENGINEERING APPLICATIONS

o>l

SECTION 5 - SOFTWARE ENGINEERING APPLICATIONS

The technical papers included in this section were origi-

nally published as indicated below:

° Basili, V. R., "Models and Metrics for Software Man-
agement and Engineering," ASME Advances in Computer

Technology, January 1980, vol. 1, copyright 1980
ASME (reprinted by permission of the publisher)

e Chen, E., and M. V. Zelkowitz, "Use of Cluster
Analysis to Evaluate Software Engineering Method-
ologies," Proceedings of the Fifth International
Conference on Software Engineering, New York: Com-
puter Societies Press, 1981, copyright IEEE (re-
printed by permission of the publisher)

5-1

MODELS AND METRICS FOR SOFTWARE MANAGEMENT AND ENGINEERING

V. R, Basili
University of Maryland
College Park, Maryland

ABSTRACT

This paper attempts to characterize and present a
state of the art view of several quantitative models
and metrics of the software life cycle. These models
and metrics can be used to aid in managing and engin-
eering software projects. They deal with various
aspects of the software process and product, including
resource allocation and estimation, changes and errors,
size, complexity and reliability. Some indication is
given of the extent to which the various models have
been used and the success they have achieved.

INTRODUCTION

The past few years have seen the emergence of a
new quantitative approach to software management and

. software engineering. It includes the use of models

and metrics based on-historical data and experience.
It covers resource estimation and planning, cost,
personnel allocation, computer use, and quality
assurance measures for size, structure and reliability

*\qf the product.

-

A gquantitative methodology is clearly needed to

2
*-aid in the software development process. It is

needed for understanding and comparison. It was said
by Lord Kelvin that if you cannot measure something,
then you do not understand it. This 1is certainly
true in the software development domain and is the
reason why various models and metrics have been de-
veloped, tested, refined and established as aids. One
needs models and quantification for comparisons. In
cost tradeoffs, for example, it is important to know
whether to add another feature, how much an extra
level of reliability will cost, or whether a modi~
fication to an existing system will be cost effective.
It should be noted, however, that the quanti-
tative approach should augment and not replace good
management and engineering judgment. Models and metrics
are only tools for the good manager and engineer. This
is especially true since the state of the art is newly
emerging and not yet well establishdd. Some models
and metrics have only been proposed but not fully
tested. Others have been tested only in the environ-
ment in which they have been developed. However, more
and more are being tested and used in environments
other than that of the developer. In this paper, some
indication of the level of experience with the models
or metrics discussed will be given.

Models and metrics must be established via sound
testing and experimentation and, before using a model,
the manager or engineer should have sufficient know-
ledge about how much to trust the results of the model.
This requires insight into the model, a known confi-

2nce level with regard to its reliability and, most

.-amportant, knowledge of the activity being modeled.

None of these models are black boxes and should not be
treated as such. Thus, before applying any model, the
user should know the nature of his project, whether the
assumptions of the model match the environment of his
project, and the weaknesses of the model so that he can
be careful in evaluating the results.

In what follows, we will cover a large, though by
no means exhaustive, set of models. The emphasis will
be on those areas where quantitative management can
give the greatest payoff. We will discuss process-~
oriented measures such as size, complexity, and relia-
bility. Each of the measures will be treated to varying
degrees. The emphasis will be on categorizing the
measures, defining a typical measure or set in the
category, and pointing out other measures only when they
are different. The references in the back of the paper
should help the interested reader pursue a particular
measure further or find additional measures not mention-
ed in this paper.

PROCESS MEASURES
Resources

1t is important that we have a better understand-
ing of the software development process and be able to
control the distribution of resources such as computer
time, personnel, and dollars. We are also interested
in the effect of various methodologies on the software
development process and how they change the distribu-
tion of resources. For this reason, we are interested
in knowing the ideal resource allocation, how it may be
modified to fit the local environment, the effect of
various tradeoffs, and what changes should be made in
the methodology or environment to minimize resources
expenditure.

There has been a fair amount of work towards de-
veloping different kinds of resource models. These
models vary in what they provide (e.g., total cost,
manning schedule) and what factors they use to calculate

‘their estimates. They also vary with regard to the type

of formula, parameters, use of previous data, and
staffing considerations. In an attempt to characterize
the models, we will define the following set of attri-
bute pairs. Models can be characterized by the type of
formula they use to calculate total effort. A single

variable model uses one basic variable as a predictor

of effort, while a multi-variable model uses several
variables. A model may be static with regard to staff-
ing, which means a constant formula is used to determine
staffing levels for each activity, or it may be dynamic,
implying staffing level is part of the effort formula
itself. Within the static multi-variable models, there
are various subcategories: adjusted baseline, adjusted
table-driven, and multi-parameter equation. The

adjusted baseline uses a single variable baseline
equation which is adjusted in some way by a set of other
variables. An adjusted table-driven model uses a

R

baseline estimate which is adjusted by a set of
variables where the relationships are defined in
tables built from historical data. A multi-parameter
model contains a base formula which uses several vari-
ables. A model may be based upon historical data or
derived theoretically. An historical model uses data
from previous projects to evaluate the current project
and derive the weights and basic formula from analysis
of that data. For a theoretical model, the formula

is based upon assumptions about such things as how
people solve problems. One last categorization is that
some models are macro models, which means they are
based upon a view of the big picture, while others are
micro models in that the effort equation is derived
from knowledge of small pleces of information scaled
up. We will try to discuss at least one model in each
of these categories.

Static single variable models. The most common
approach to estimating effort is to make it a function
of a single variable, project size (e.g., the number
of source instructions or object instructions). The
baseline effort equation is of the form

EFFORT = a * SIZEb

where a and b are constants. The constants are deter-
mined by regression analysis applied to historical
data. In an attempt to measure the rate of production
of lines of code by project as influenced by a number
of product conditions and requirements, Walston and
Felix (1) at IBM Federal Systems Division started with
this basic model on a data base of 60 projects of
4,000 to 467,000 source lines of code covering an
effort of 12 to 11,758 man months. The basic relation
they derived was

E=s.20

where E is the total effort in man months and L is the
size in thousands of lines of delivered source code,
including comments. Beside this basic relationship,
other relations were defined. These include the rela-
tionships between documentation DOC (in pages) and
delivered source lines

poc = 4oLt Ot

project duration D (in calendar months) and lines of
code

D= 4.1

project duration and effort

D = 2,478

and average staff size S (total staff months of effort/
duration) and effort

s = .54 0

The constants a and b are not general constants.
They are derived from the historical data of the
organization (in this case, IBM Federal Systems Divi-
sion). They are not necessarily tranmsportable to
another organization with a different environment. For
example, the Software Engineering Laboratory (SEL) on a
data base consisting of 15 projects of 1.5 to 112
thousand source lines of code covering efforts of 1.8
to 116 staff months have calculated for their environ-

' ment the following set of equatioms (2):

5-3

g = 1.4

poc = 29,5L°92

D = 4.41°287

D= 4.4E'26

s = 2,38 7%

Some other variables, including different ways of count-
ing code, were measured by the Software Engineering .
Laboratory and the equations derived are given here.
Letting DL = number of developed, delivered lines of
source code (new code + 202 of reused code), M = number
of modules, DM = total number of developed modules (all
new or more than 202 new) we have

E=1.580L°%%, E = .063m>18, £ - .19p40,

D=4.60L°8, D=z peasomd,

.26 92

D =2.0D DOC = 35.7DL°°°, DOC = 1.5u1‘17,

poc = 4.8pM" ??

Most of the SEL equations lie within one standard
error of the IBM equation and, since the SEL environ-
ment involves the development of more standardized
software (software the organization has experience in
building), the lower effort for more lines of code seems
natural. It is also worth noting that the basic effort
vs. lines~of-code equation is almost linear for the
SEL--more linear than the Walston/Felix equation. Re-
member that the project sizes are in the lower range of
the IBM data. Lawrence and Jeffery (3) have studied
even smaller projects and discovered that their data
fits a straight line quite well, i.e., their baseline
effort equation is of the form

EFFORT = a * SIZE + b

where again a and b are constants derived from historical
data. The implication here is that the equation becomes
more linear as the project sizes decrease.

Static multi~variable models. Another approach to
effort estimation is what we will call the static multi-
A resource estimate here is multi-
variable because it is based on several parameters, and
static because a single effort value is calculated by
the model formula. These models fall into several sub-
categories. Some start with the baseline equation just
discussed based on historical data and adjust the initial
estimate by a set of variables which attempt to incor-
porate the effects of important product and process
attributes. In other models, the baseline equation
itself involves more than one variable.

The models in the adjusted baseline class differ in
the set of attributes that they consider important to
their application area and development enviromment, the
weights assigned to the attributes, and the constants
of the baseline equations.

Walston and Felix (1) calculated a productivity
index by choosing 29 variables that showed a signifi-
cantly high correlation with productivity in their en-
vironment. It was suggested that these be used in
estimating and were combined in a productivity index

I i wi xi

where I is the productivity index, w, is a factor

weight based upon“~the productivity céange for factor i
and x, = +1, 0, or -1, depending on whether the factor
indic%tes increased, nominal or decreased productivity.

One model that fits into the single-parameter
baseline equation with a set of adjusted multipliers
is the model of Boehm (4), whose baseline effort
estimate relies only upon project size. His set of
attributes are grouped under four areas: (1) product--
required fault freedom, daca base size, product com-
plexity, adaptacion from existing software; (2) compu-
ter--execution time constraint, machine storage
constraint, virtual machine volatility, computer
response time; (3) personnel--analyst capability, appli-
cations experience, programmer capability, virtual
machine experience, programming language experience;
(4) project--modern programming practices, use of
software tools, required development schedule. For
each attribute Boehm gives a set of ratings ranging
from very low to very high and, for most of the attri-
butes, a quantitative measure describing each rating.
The ratings are meant to be as objective as possible
(hence the quantitative definitions), so that the
person who must assign the ratings will have some in-
tuition as to why each attribute could have a signifi-
cant effect on the total effort. In two of the cases
where quantitative measures are not possible, required
fault freedom and product complexity, Boehm provides
a chart describing the effect on the development
activities or the characteristics of the code corre-
sponding to each rating. Associated with the ratings
is a chart of multipliers ranging from about .1 to l.8.
Another model which falls into this category is the
model of Doty (5). The Doty model, however, provides
a different set of weights for different applications
besides two ways to estimate size.

One model which falls into the category of
adjusted table-driven is that of Wolverton (6). Here
the basic algorithm involves categorizing the software
routines. The categories include control, 1/0, pre-
or post-algorithm processor, algorithm, data manage-
ment, and time critical routines. Each of these
routines has its own cost-of-development curve, depend-
ing upon the degree of difficulty (easy, medium, or
hard) and the newness of the application (new or old).
The cost is then the number of instructions by cate-
gory and degree of difficulty times the corresponding
cost taken from a table. Another model of this type,
but more simplistic, is Aron (7).

The GRC model (8) involves a set of equations
derived from historical data and theory for the
various activities, several of which are multi-
parameter equations of more than one variable. For
example, the equation for code development is

1.2583 -.08953 * Y
X e

OF EXP

MMCD = 9773 x N

where MM is the baseline staff months for code
develo At task group for a subsystem, NOF = the
number of output formats for a subsystem and Y is

the average years of staff experience in code
development. It is worth noting that size of the code
is not a factor in this formula. Other formulas exist
for the effort involved in analysis and design, system
level testing, documentation, installation, training,
project control, elapsed time and a reasonable check
for the total staff months for the project (M¥P§9J)

MM,y = -0218 * (2 + NOF) * In(2 + NOF))

where N

OF is as defined above.

Dvnamic multi-variable models. Once an effort
estimate is made, the next question of concern is how
to assign people to the project so that the deadlines
for the various development activities will be met.
Here again there are basically two approaches: cthe
one empirical, the other theoretical. Each of the
methods discussed so far uses the empirical approach
which tries to identify the activities which are a
part of the development process of a typical project
for their software house. Then, using accounting data
from past projects, they determine what percentage of
the effort was expended on each activity. These
percentages serve as a baseline and are intuitively
adjusted to meet the expected demands of a new project.
For example, in the Wolverton model, total cost is
allocated into five major subareas: analysis cost
(20% of total), design cost (18.7% of total), coding
cost (21.7% of total), testing cost (28.3% of total)
and documentation cost (11.3% of total). Each of
these subarea costs are subdivided again, depending
upon the activities in the subareas. In this way,
each activity can be staffed according to its indi-
vidual budget. Allocation of time is determined by
history and good management intuition.

The theoretical approach attempts to justify
its resource expenditure curve by deriving it from
equaticns which model problem~solving behavior. In
other words, the resource model lays out the staffing
across time and within phases. We will refer to
this approach as the dynamic multi-variable model.
It is dynamic because the model produces a curve which
describes the variation of staffing level across time.
The model is multi-variable because it involves more
than one parameter.

Two models in this category will be discussed
which differ in the assumptions they make. The first
model, which is the most widely known and used, is the
Putnam model (9).

The model is based on a hardware development
model (10) which noted that there are regular patterns
of manpower buildup and phase-out independent of the
type of work done. It is related to the way people
solve problems. Thus, each activity could be plotted
as a curve which grows and then shrinks with regard to
staff effort across time. For example, the cycles in
the life of a development engineering project look as
follows:

X
=
§ €
PROTOTYP RELEASE
2 CYCLE CYCLE
3 DESIGN
Z |PLANNING & CYCLE
2 [sPeCIFicA. /
Z [roncveLe
< \ “/
s
MONTHS

Similar curves were derived by Putnam for software
cycles which are: planning, design and implementation,
testing and validation, extension, modification and
maintenance. ’

The theoretical basis of the model is that soft--
ware development 1s a problem-solving effort and design
decision-making is the exhaustion process. The various
-development activities partition the problem space
into subspaces corresponding to the various stages
(cycles) in the life cycle. A set of assumptions is
then made about the problem subset: (1) the number of
problems to be solved is finite, (2) the problem-
solving effort makes an impact on and defines an en-
vironment for the unsolved problem set, (3) a decision
removes one unsolved problem from the set (assumes
events are random and independent) and (4) the staff
size is proportional to the number of problems "ripe"
for solution. Because the model is theoretically based
(rather than empirically based) some motivation for the
equation is given. Consider a set of independent de-
vices under test (unsolved problem set) subject to
some environment (the problem-solving effort) which
generates shocks (planning and design decisions). The
shocks are destructive to the devices under test with
some dependent conditional probability distribution
p(t) which is random and independent with some rate
parameter A. Assume the distribution is Poisson and
let T be a random variable associated with the time
interval between shocks

Pr(T > t) = Pr 1)
(no event occurs in interval (o, t))

where t = o is the time of the most recent shock
letting p(t) be the conditional probability of a fail-
ure given that a shock has occurred and A be the
Poisson rate parameter, then

Mg ptx) dx)

Pr(T>U=, 2)

t
A plx)dx)

Pr(T <t)=1- (3)

and the p.d.f. associated with {3) is

t
fl) = Apt)%e ~A ¢ pix) dx), t> 0

This leads to the class of Weibull distributions (known
in reliability work) with the physical interpretation
that the probability of devices succumbing to destruc-
tive shocks is changing with time. Based upon observed
data on engineering design projects, a special case of
(3) can be used

2
y=f() = 1-¢ (4)
where p(t) = at (5)
and a= A;‘— (6)

Note that this implies engineers learn to solve problems
with an increasing effectiveness (i.e., familiarity with
the problems at hand leads to greater insight and sure-
ness). Parameter a consists of an insight generation
rate X and a solution finding factor a. Equation (5) is
a speciil linear case of the family of learning curves:
y = a x°.

Equation (4) is then the normalized form of the
life cycle equation. By introducing a parameter (K)
xpressed in terms of effort, we get an effort curve,

the integral form of the life cycle equation

atz

y=K* (1 -e ")

where

y is the cumulative manpower used through
time t i

K is the total manpower required by the cycle
stated in quantities related to the time
period used as a base, e.g., man-months/
month

a is a parameter determined by the time period
in which y” reaches its maximum value
(shape parameter)

t is time in equal units counted from the
start of the cycle

39% of cotal effort used

cumulative
effore
w
o

ta time

The life cycle equation (derivative form) is

2
2
-a t

-

y = 2Kate

where y” is the manpower required in time period t
stated in quantities related to the time period used
as a base and K is the total manpower required by the
cycle stated in the same units as y~.

vma ‘

EFFOKT

S~

td time

The curve (called the Rayleigh Curve) represents the
manpower buildup. The sum of the individual cycle
curves results in a pure Rayleigh shape. Software de~-
velopment is implemented as a functionally homogenous
effort (single purpose). The shape parameter a depends
upon the point in time at which y” reaches its maxi-
mum, i.e.

as= 1/ 2

2td

where t, is the time to reach peak effort. Putnam has
empirically shown t, corresponds closely to the design
time (time to reach initial operational capability).
Substituting for a we can rewrite the life cycle
equation as

2
"= kK *ee"t tdz
t 42

5-5

The equations given are for che entire life cycle.
To find development effort only

take
t2
);

1
substitute a= "/

y=K?® (1-e72

2
th

2
y =K * (1-e'" /z:d2))

then the development effort is time to td

2
(~t /2: 2)

- * -
y K (l-e 4

)
=K * (1-e"")
= ,3935K
or DE = 40% of LC effort
The life cycle and development costs may be calcu-

lated by multiplying the cost for that cycle by staif
year cost

SLC = K*MC
where MC = mean cost (in $) per man year of
effort
K = total manpower (in man years) used
by the project
(Note: the equation neglects computer time,

inflation, overtime, etc.)

and .
$DEV = MC * (.3935K)=w .4 ® SLC

Putnam found that the ratio K/(:z) has an inter-
esting property. It represents the difficulty of a
system in terms of programming effort required to pro-
duce it. He defines

D = K/(t)

To illustrate how management decisions can in-
fluence the difficulty of a project, assume a system
size of K = 400 MY and t, = 3 years. Then the diifi-
culty D = 400 / 9 = 44.4 man years per year squared.

Consider a management decision to cut the life
cycle cost of the system by 10%. Now, K = .9 * (400) =
360 MY and D = 360 / 9 = 40. This results in a 10%
decrease in assumed difficulty of the project. This
decision assumes the difficulty is less than it really
is, and the result is less product.

Now consider the more common case of attempted
time compression. Assume management makes a decision
to limit the expended effort to 400 MY, but wants the
system in 2.5 years instead of 3 years. Now, K =
400 MY, t, = 2.5 years, and D = 400 / 6.25 = 64 (a
44% increase). The result of shortening the natural
development time is a dramacic increase in the system
difficulty.

The Putnam model generates some interesting
notions. Productivity is related to the difficulty
and the state of technology; management cannot arbitra-
rily increase productivity nor can it reduce develop~-
ment time without increasing difficulty. The tradeoff
law shows the cost of trading time for people.

In deriving an alternate model, Parr (11) ques-
tions the assumption of the Rayleigh equation that
the initially rising work rate is due to the linear
learning curve which governs the skill available for
solving problems. He argues that the skill available
on a project depends on the resources applied to it
and that the assumption confuses the intrinsic con-
straints on the rate at which software can be developed
with management’s economically-governed choices about
how to respond to these constraints.

As an alternative to this assumption, his model
suggests that the initial rate of solving problems is
governed by how the problems in the project are re-
lated, i.e., the dependencies between them. For
example, the central phase of development is naturally
suited to rapid rates of progress since that is when
the largest number of problems are visible. Letting
V(t) be the expected size of this set of visible
(available for solving) problems at time t, Parr's model
yields the equation

- it
Ae v

v(t) = __ —
Qa + re~ T 'xt)(? + 1N

where

a 1is the proportionality constant relating the
rate of progress and the expected size of the
visible set

A 1is a measure of the amount of work done on the
project before the project officially starts

)— is a structuring index which measures how much
the development process is formalized and uses
modern techniques.

The curve represented by V(t) differs from the
Rayleigh/Norden curve for y“(t) in two important ways.
The Rayleigh curve is constrained to go through the
origin; the Parr curve is not. Making y“(0) = O
corresponds to setting an official start date for the
project. Before that point, the effort expended on
the project is assumed to be minimal. In reality, there
is often a good deal of work done before that date, in-
cluding such activities as requirements analysis and
feasibility studies. In Putnam's enviromment, these
were handled by a separate organization and could be
ignored. Another factor that affects the problem space
is past experience in the application area, or even
more tangible is the influence of design or code taken
from past projects. All of these have the effect of
structuring the problem space at the beginning, so that
more progress can be made early. The Parr curve accounts
for this; the Putnam curve does not. See Fig.l for a
comparison of the two curves.

A second distinction between the two curves is
the flexibility of where the point of maximum effort can
come. By using a structuring index greater than one,
this point of maximum effort can be delayed almost to
acceptance testing and effort could still be drastically
reduced before project completion. With the Rayleigh
curve, a late point of maximum effort constrains the
curve to have a slow buildup and almost no decay at
the end.

Parr does not say how to estimate the parameters
for V(t) in terms of data the project manager would
have on hand. This is a problem in doing resource
estimation currently, but the model could use the ex-
isting resource allocation schedule, based on early
data points, to predict the latter part of the curve.
The Parr model is only currently being tested on real

Fig.l Weekly direct labor resources (manhours)

PARR vs PUTNAM

software for the first time and the results are not

* yet available. The Rayleigh model, on the other hand,
has been used in many environments and has been quite
successful on the whole.

Single variable, theoretical. The two previous
theoretical models may be thought of as macro models
in that the estimate of staffing levels relies on
process oriented issues, such as total effort, schedule
constraints, and the degree that structured methodol-
ogy 1is used. Product oriented issues, such as source
code, are not a factor. Most of the other models are
less macro oriented in that they consider product
characteristics, such as lines of code and input/
output formats. In this section, we will discuss
another type of theoretical model, based upon lower
level aspects of the product, which we will call a
micro model. The particular model discussed here deals
with the idea that some basic relationships hold with
regard to the number of unique operators and operands
used in solving a problem and the eventual effort and
time required for development. This notion was pro-
posed by Halstead as part of his software science (12).
Here there is only one basic parameter--size--measured
in terms of operators and operands. The model tran—
scends methodology and environmental factors. Most of
the work in this area has dealt with programs or algo-
rithms of module size rather than with entire systems,
but that appears to be changing.

In the language of software science, measurable
properties of algorithms are

n number of unlique or distinct operators in

an implementation

5-7

S S LYV PN s e ot b ettt
f G 101219416 160:0020426 28 JOBTBMI 36 IBA0AD 1996 48505245956 586062 646668707274 76780

number of unique or distinct operands in

2 an implementation
fl number of occurrences of the jth most
3 frequent operator, j = 1, 2, L
f2 j number of occurrences of the jth most
’ frequent operand, j = 1, 2, L)
then the vocabulary of an algoritim is
n= nl + nz
and the implementation length is
- +
N Nl Nz
where
n n n
NpeohE L, N2=£2f2, , N=f gt
j=1 1 j=1 23 t=1 j=1 +3

Based only on the unique operators and operands,
the concept of program length N can be estimated as

’~
N = ny log2 n, + n, log2 n,

s actually the number of bits necessary to represent
all things that exist in the program at least once, i.e.,
the number of bits necessary to represent a symbol table.
Over a large set of programs in different enviromments,
it has been shown that N approximates N very well.

To measure the size of an algorithm, software
science transcends the variation in language and charac-
ter set by defining algorithm size (volume) as the

minimal number of bits necessary to represent the imple-
mentation of the algorithm. For any particular case,

there 1is an absolute minimum length for representing

the longest operator or operand name expressed in bits.
It depends upon n, e.g., a vocabulary of 8 elements re-
quires 8 different designators, or log., 8 is the mini-
mal length in bits necessary to represént all individual
elements in a program. Thus, a suitable metric for size
of any implementation of any algorithm is V = N log, n,
called volume.

The most succinct form in which an algorithm can
be expressed requires a language in which the required
operation is already defined and implemented. The po-
tential volume, V*, ig defined as

Vk = (NI + Ni) logz (ni + nE)

but minimal form implies N* = n* and NE = n¥* because
there should be no repetitlon. “The nuiber %f operators
should consist of one distinct operator for the function
name and another to serve as an assignment or grouping
symbol so n* = 2. Thus, V*# = (2 + n*) log, (2 + n*)
where n% refresents the number of dizferenz inpu:/gucput
paranetgrs. Note: V* ig considered a useful measure

of an algorithm's content. It is roughly related to the
basic GRC model concept of input/output formats. In
fact, the GRC equation for man months of the project

() is an exponential relationship between HHPROG
and” an estimate of V%,

The level of the implementation of a program is
defined as its relation to its most abstract form, V*,

*
!-. L §$ 1 and the most succinct expression

for an alggrithn has a level of 1. V2 = L x V implies
that when the volume goes up the level goes down. Since
it is hard to calculate V*, an approximation for L, L,
is calculated directly from an implementation

i.e., L=

T= 3:1 ~L. The reciprocal of level is defined as
o, N
172

the difficulty, D = 1/L, which can be viewed as the
amount of redundancy within an implementation.

Based on these primitives, formulas for program-
ming effort (E) and time (T) are derived. Assuming the
implementation of an algorithm consists of N selections
from a vdcabulary of n elements and that the selection

iz non-random and of the order of a

plying log, n comparisons for the selection of each
element), Ehe effort required to generate a program is

N log., n mental comparisons (this is equal to the

volumz (V) of the program). Each mental comparison re-
quires a oumber of elementary mental discriminations
vhere this number is a measure of the difficulty (D) of
the task. Thus, the total number of elementary mental
discriminations E required tozgenera;e a given program
should be E = V D = V/L = V7/V*, This says the mental
effort required to implement any algorithm with a given
potential volume should vary with the square of its
volume in any language. E has often been used to measure
the effort required to comprehend an implementation
rather than produce it, i.e., E may be a measure of pro-
gram clarity.

hinarv sasrsh

binary search (im-

To calculate the time of development, software
science uses the concent of a moment, defined by the
psychologist Stroud as the time required by the human
brain to perform the most elementary discrimination.
These moments have been shown to occur at a rate of 5
to 20 per second. Denoting moments (or Stroud's number)
by S, we have 5 § S ¢ 20 per second. Assuming a pro-
grammer does not "time share" while solving a problem,
and converting the effort equation (which has dimensions

of both binary digits and discriminations) we get

2
v v
T --% =L ™ Syx- Halstead empirically estimated S = 18

for his environment, but this may vary from environment
to environment.

Software science metrics have been validated in a
variety of enviromments but pradominantly for module
size developments.

Other resources. In what has been stated so far,
resource expenditure and estimation have been pre-
dominantly computed in terms of effort. The formula for
cost may be a simple multiplication of the staff months
times the average cost of a staff member or it may be
more complicated. It may include some difference for
the cost of managers versus the cost of programmers
versus the cost of support personnel whose role varies
across the life cycle (13).

The schedule may be derived based upon historical
data, with effort allocated to different activities
based upon the known percentages or it may be dictated
by the model itself, as with the Rayleigh curve. How~
ever, the dynamic models generate what they consider the
ideal staffing conditions which may not be the actual
ones available. Thus, in fitting actual effort to the
estimated or proposed effort, some decisions and trade-
offs must be made.

Computer time is yet another resource. Unfor-
tunately, none of the above models treats this within
the same formula. In general, they have a separate
formula for computer time again based upon computer use
in similar projects. These models vary from a simple
table type model (6) to some very sophisticated proba-
bilicy distribution based on reliability modeling for
phases of the development, such as testing (14).

Changes and Errors

There are process aspects other than resource ex-
penditures that provide information about managing and
engineering the process and the product. One such
aspect is the changes and errors generated during de-
velopment or maintenance. Monitoring the changes in the
software provides a measure of level of effort to get
the product in order. If we can classify che types of
changes that occur or their source of origin, we can
categorize the environment and gain insight into how
to manage or minimize the effect of particular types of
changes. For example, suppose the user is generating a
series of major changes at a continual rate. This may
provide management with the information it needs to
reclassify the environment from its original one to a
more complex one, permitting modification of the cost
parameters in the resource estimation model and a re-
estimation of cost part way through the project. It
could also provide management with the necessary insight
to change the development approach or methodology to one
that i{s more insensitive to externally generated change,
such as some incremental development approach.

Monitoring errors provides information with regard
to the quality of the product. A product developed
with only a few errors or with errors found early and
an error rate decreasing during development and testing
will warrant more confidence in its quality. Keeping
track of the time to find and fix errors gives insights
into cost. Knowing the types of errors being made helps
in focusing attention to particular problems during the
code-reading and design-review sessions.

Program evolution measures. Belady and Lehman (15)
have examined the changes occurring in software during
" maintenance and derived a set of laws for program
_evolution. Based on such parameters as size of the
system, number of modules added, deleted or changed,
the release data, manpower, machine time and cost, they
derived the following laws:

1. Law of continuing change. A system that is
used undergoes continuing change until it is judged
more cost effective to freeze and reqreate it.

2. Law of increasing entropy. The entropy of a
system (its unstructuredness) increases with time,
unless specific work is executed to maintain or reduce
it.

3. Law of statistically smooth growth. ‘Growth
trend measures of global system attributes may appear
to be stochastic locally in time and space, but, sta-
tistically, they are cyclically self-regulating with
well-defined long-range trends.

These laws can be demonstrated by using the following
metrics:

RSN, the felease number

D the age of system at release R

r’
It’ the time between releases R-1 and R

Mr, the number of modules in the system

MH_, the number of modules handled during release
interval I_ (estimator of activity under-
taken in each release)

HR = MH /I , the handle rate
r r'r

c, = MHr/M , the complexity which is the frac-
tion of released system modules that
were handled during the course of
the release R.

0 >

Time

C_ has been observed to be monotonically increasing
and approaching unity over time (for 0S 360, approxi-
mately 20 releases over 10 years).

Using these metrics, management can predict when
it is too costly to modify a system, i.e., when it is
cheaper to redesign than make the next change. It
can also determine whether enough effort is being de-
voted to keep future changes at a reasonable cost.

Program-changes. Dunsmore and Gannon have proposed
a measure called program-changes which correlates very
highly with errors (16). A program-change is a textual
revision in the source code of a module during the de-
velopment period. One program-change should represent
one conceptual change to the program. Thus, a program-
change is defined as one or more changes to a single
statement, one or more statements inserted between ex-
isting statements, or a change to a single statement

5-9

followed by the insertion of new statements. On the
other hand, the following are not counted as program
changes: the deletion of one or more existing state-
ments, insertion of standard output statements or
special compiler-provided debugging directives, and
insertion of blank lines or comments. Basili and
Reiter showed that programchanges were minimal when a
good software development method was used (17).

Error-day. An error-based measure of product
quality was proposed by Mills (18) which he called the
error-day. The motivation is that the longer an error
remains in the system the more expensive and less re-
liable it is. The error-day measure is simply the sum
over each error of the number of days it has existed
within a system. It weights errors by their duration
in the system. Clearly, a low error-day count is an
indicator of a well-engineered program. This measure
could be automated by using the concept of program-
changes and plotting them against time.

Job-steps. An indication of the amount of effort
expended in development can be the number of computer
accesses or job-steps. A computer job-step is a
single programmer-oriented activity performed on a com-
puter at the operating system command level, which is
basic to the development effort and involves nontrivial
expenditures of computer or human resources. Typical
job-steps might be text editing, module compilation,
link editing, and program execution. Basili and
Reiter (17) found job-steps to be a serious differ-
entiator of development environments, and that good
methodology leads to a smaller number of job-steps.

There exist many other measures of the software
development process. The interested reader is re-
ferred to some general references in the literature,
e.g., Curtis (19), Mohaaty (20), Belady (21).

PRODUCT MEASURES

Actually, all the previous measures could have
been considered measures of the product. If a product
takes a long time or a large effort to develop, we may
consider it a complex product. If there were lots of
errors found at the tail end of product development
or if the rate of finding errors was increasing every
day, we would say the quality of the product was very

low. However, each of these indicated as much, if not

more, about the process than the product.

The measures discussed in this section are probes
into the product. They are taken at a discrete point
in time, usually on the final deliverable product.

Even though examining the changes in value of the
metrics on the product over time could be very informa-
tive with regard to the process, we will classify them
as product measures. We categorize these measures with
respect to size, structure and reliability.

Size

The size of a product is a simplistic measure and
easy to calculate. It is a reasonable indicator of the
amount of work expended and correlates well with effort.
Size metrics are used for cost estimation, comparison
of products, and for measures of productivity. Although
it may be a basic ingredient in effort and productivity
measures, it must be modified by many other factors,
such as reliability and complexity. These measures
will be treated in subsequent sections.

The most common measure of size is lines of code.

However, what gets measured depends to a great extent
on our interests. For example, if we are interested
in measuring effort, then source lines including com=-
ments and data are a reasonable measure and have been
used in several studies (1, 2). 1If we are interested
in function size, a better approximation may be exe-
cutable statements. If our interest is in comparing
the size of resulting products for operational use, a
common denominator is number of machine language in-
structions. Clearly, there is little agreement on the
appropriate measure of lines of code and the choice
should depend upon the issue under consideratiom. It
is important in reading the literature that we clearly
understand which measure of size is being used, since
the authors do not always make it clear.

Another measure of size is to treat units larger
than lines of code. One common unit is the module.
Modules are used in the measures of Belady and Lehman
(21) and were shown to be reasonable measures for cost
estimation by Freburger and Basili (2). Smaller units,
such as procedures or functions, were used by Basili
and Reiter (17). Again, the choice is dependent upon
the purpose of the measure. For estimation, it is
sometimes easier to predict the number of modules
rather than the number of lines. However, comparison
may be difficult since there is no standard definition
of module.

On the other end of the size spectrum is the num-
ber of operators and operands as defined in software
science by Halstead (12). More specifically, the
length and volume measures are potential measures for
size of an implementation and size of the functionm,
respectively. There have been several studies that
support these metrics as reasonable approximations to
what they purport to measure. They make good metrics
for comparison and possible evaluation, but there is
potential for using them for estimation also.

Structure

The structure of a program is often a good indi-
cator of whether that product is well designed, under-
standable, and easy to modify. Structure measures
are often proposed as measures of the complexity of
the product. In examining structure, we may be con-
cerned with the control structure, the data structure,
or a mixture of the two.

Control structure measures. The simplest control
structure metric is the number of decisions (17) as
measured by the number of constructs that represent
branches in the flow of control, such as if then else
or while do statements. There is a basic belief that
the more control flow branching there is in a system
the more complex it is. A variation of this measure
is the relative percentage of control flow branching,
i.e., the number of decisions divided by the aumber of
executable statements. Early studies by Aron (7)
showed that varying levels of this type of complexity
could account for a nine to one difference in
productivity.

A more refined measure of control complexity is
cyclomatic complexity as proposed by McCabe (22). The
cyclomatic complexity of a graph is defined as the
aumber of edges minus the number of nodes plus the
number of connected components, and is equal to the
minimum number of basic paths from which all other paths
may be constructed. Given a program in which all state-
ments are on a path from the entry node to an exit node,
the cyclomatic complexity can be defined as the number
of predicates plus the number of segments. A predicate

is defined as a simple Boolean expression governing
the flow of control and a segment is defined as an “in-
dividual routine (procedure or functiom).

The measure originated as a count of the minimum
number of program paths to be tested. This is one
quantitative measure of a program’'s complexity. The
measure i{s usually applied at the module level and
McCabe proposed a cyclomatic complexity of tem as an
upper bound for the safe range with regard to the con-
plexity of a module. Several variations of the basic
cyclomatic complexity measure have been studied by
Basili and Reiter (23). They evaluated their sensi-
tivity to different software development environments
with reasonable success. They have also defined some
approaches to using the measure at the product level
rather than the module level in a way that is reason-~
ably insensitive to system modularization.

Other measures of control complexity involve the
weighting of various types of control structures as
to whether they are simple or complex, where simple
means easy to read and prove correct based upon the
graph structure, For example, single-entry single-exit
program graphs that contain a single predicate node
are easier to understand and abstract from than more
complicated graph structures. Thus, one approach
would be to weight various graph structures based upon
this complexity. This type of measure requires a more
detailed analysis of the program structure than does
the cyclomatic complexity measure, but tends to be a
deeper measure of control flow and can include other
complexity factors, such as nesting level. Ome such
measure is essential complexity (22), which assigns
every program using only structured programming con-
trol structures a complexity of one.

Data structure measures. Data structure metrics
try to measure the complexity of the program structure
by the way the data is used, organized, and allocated.
Clearly, the simpler the reader's ability to abstract
the use of data the easier the program will be to
understand and modify. Several measures have been
used for evaluating the structuring of the daca in a
program and a few will be discussed here.

The segment-global usage pair metric (24) attempts
to measure the goodness of the use of globals in the
program. A segment-global usage pair (p, r) is an
instance of a global variable r being used by a seg-
ment p (i.e., r is either modified or accessed by p.
Each usage pair represents a unique ''use connection'
between a global and a segment. Let actual usage pair
(AUP) represent the count of realized usage pairs, i.e.,
r is actually used by p. Let possible usage pair (PUP)
represent the count of potential usage pairs, i.e.,
given the program's globals and their scopes, the scope
of r contains p so that p could potentially modify or
access r. This represents a worst case. Then the
relative percentage usage pairs (RUP) is RUP = AUP/PUP
and is a way of normalizing the number of usage pairs
relative to the problem structure. The RUP metric is
an empirical estimate ¢£ the likelihood that an
arbitrary segment uses an arbitrary global.

The data binding metric (24, 25) is an attempt at
measuring the inter-relationship of modules or segments
within a program. A segment-global-segment data bind-
ing (p, r, q) is an occurrence of the following:

(1) segment p modifies global variable r, (2) variable

r is accessed by segment q, and (3) p ¥ q. The exist-
ence of a data binding (p, r, q) implies that q is
dependent on the performance of p because of r. Binding
{p, r, q) does not equal binding (q, r, p). (p, T, Q)

10

represents a unique communication path between p and g
and the total number of data bindings represents the
degree of a certain kind of "connectivity," i.e., be-
tween segment pairs via globals, within a complete
program. Let actual data bindings (ADB) represent the
absolute number of realized data bindings in the pro-
gram, i.e., the realized connectivity, and possible
data bindings (PDB) represent the absolute number of
potential data bindings given the program's global
variables and their declared scope (i.e., same worst
case). Then we can normalize the number of data bind-
ings by calculating the relative percentage RDB =
ADB/PDB. This gives some relative measure of the amount
of information exchanged in the program.

A measure of the amount of data required to be
understood by the programmer while reading a program
is span (26). A span is the number of statements be-
tween two consecutive textual references to the same
identifier. Thus, for n appearances of an identifier
in the source text, n-1 spans are measured. All appear-
ances are counted except those in declare statements.
If the span of a variable is greater than one hundred
statements, then one new item of information must be
remembered for a hundred statements until it is read
again. The complexity of the program would be the num-
ber of spans at any point, i.e., the amount of data
the reader must be aware of when reading any particular
statement.

Control and data structure measures. There are
models of structure that address the integration of
control and data flow. One such model is slicing (27).
Informally, slicing reduces a program to a minimal
form which still produces a given behavior for a sub-
set of the data. The desired behavior is specified

.as a projection from the program's original behavior.
-For instance, if a program computes values for vari-
" ables X, Y, and Z, then one projection might be the

- value of X at program termination. The minimal pro-
gram is obtained by eliminating program statements
which do not affect the projected behavior. The re-
sult is a smaller program which contains only those
statements from the original program which affect the
selected behavior.

There are several possible metrics based on pro-
gram slicing. These include (1) coverage, the ratio
of slice length to program length; (2) overlap, a
measure of the sharing of statements among different
slices; (3) clustering, the percentage of statements
in the slice which were adjacent in the original pro-
gram; (4) parallelism, the number of almost disjoint
slices; and (5) tightness, the ratio of statements
found in every slice to total statements in the original
program. Each of these metrics gives some view of the
complexity of the program with respect to the control
and data flow.

Reliability

Measuring the reliability of a product may involve
an analysis of the (1) distribution or classification
of errors, or (2) execution of the product in a testing
or operational environment. Metrics involving the dis-
tribution of errors can include the program changes
and error-day metrics discussed earlier. Other metrics
involve distributions, such as fixes per linme of code,
fixes per phase, errors per person hour, errors per
type of change causing the error, fixes per detection
and correction technique, etc. Weiss (28) has studied
various distributions in evaluating a development
methodology by showing a profile of the error distribu~
tions made when using the methodology. Endres (29) used

error classification schemes to analyze the reliability
of a release of an operating system.

With regard to the operation of the program,
several reliability models have been proposed in the
literature (14, 30, 31, 32). Software reliability
here is defined as the probability that a given soft~
ware program operates for some time period without
software error which is detectable by executing the
code on the machine for which it was designed, given
that it is used within design limits. Reliability
measurement can be done for evaluation purposes as well
estimation purposes. The models measure reliability as
a function of calendar time, computer usage or accumu-
lated man hours and require parameters, such as the
error detection rate and the total number of errors in
the system, before testing. These estimates can be
based on theoretical assumptions or historical data.

A particular reliability model due to Shooman (30)
is based upon a set of assumptions, such as (1) the
operational software errors occur due to occasional
traversing of a portion of the program in which a
hidden software bug is lurking; (2) the probability
that a bug is encountered in the time interval At,
after t successful hours of operation is proportional
to the probability that any randomly chosen instruction
contains a bug, i.e., the fractional number of remain-
ing bugs € - Then the probability of a failure during
time interval (t, t + At), given no failures have oc-
curred up until t is proportional to the failure rate
z(t) (hazard function). Thus, the probability of
failure in interval At, given no previous failure, is
P(t<t . st+ at|t,.> t) = z(t) * At = K€ (1) At
where t_ is operating time to failure, K is an arbitrary
constang, T is the debugging time in man months, t is
the operating time in hours. K can be estimated by ex-
amining the history of errors detected, e.g.,

K~ # catastrophic errors detected.
total # errors detected

The probability of no system failure in the inter-
val (0, t) is given by the reliability function

-IF z(x) dx
R(t) = e ° -
assuming reliability is related to the failure rate.
Assuming K and €. (t) are independent of operating time
t we get

R(t) = e—{Ktt(r)}c,e-ét

E
- e-x{ 'I‘/IT - Gc(t)}t

where ¢ 1is the number of corrected errors, is the
total nimber of initial bugs in the program and IT is
the number of instruction in the program. This implies
the probability of successful operation witRout soft-
ware bugs is an exponential function of operating time.

A simplier way to summarize the results of the re-
liability model is to compute the mean time to (software)
failure, MITF using the reliability function

O
ITF =f R(EME = _ 1 =
o Ker(r) K{ T/rT -(c(r)}

If the error correction rate po is constant, then ¢ (1)
=0, (1) and ¢

MTTF =~ ees =
K;l‘_-Do:J B(L-am)

IT

where 8 = EL K and a=o0 I

o T
I ————
T ET
12}
Lo
e 8L
= .l
K
0 I L L

1/4 1/2 3/4
éormaliéed cime/

Note the most improvement in MTTF occurs during the
last quarter of debugging.

Other models are based upon different assumptionms,
but all yield some measure of the reliability of the
product.

The reader interested in other product measures
is again referred to some general references in the
literature (19, 20, 21).

PRODUCT MEASURES ACROSS TIME

As mentioned earlier, measurés can be taken once
on the final product or at discrete intervals through-
out the life cycle. In this latter approach, metrics
can be used to monitor the stability and quality of
the product. By re-evaluating the metrics periodi-
cally, we can see if the product is changing its charac-
ter in any way. It can provide feedback during develop-
ment and maintenance. For example, if we find that
over a period of time more and more control decisions
have entered the system, then something may have to be
done to counteract this change in character.

This approach is a way of providing a relativ-
istic evaluation of the product. As such, it is
easier to understand than an absolute measure. That
is, it may be more informative to know that each
change we make in the system increases the complexity
of the system, than to know the total complexity of
the system is some specific number. Here we need
only compare the values of the metrics with values of
the metrics on earlier versions of the system. The
drawback to an absolute measure is that we have
nothing to compare it to.

DATA COLLECTION

One major concern with performing measurement is
the ability to collect reliable data. Before we begin
collecting data, however, we must first understand
the various factors that characterize our environment.
We must isolate those factors we hope to control,
measure, and understand so that we may analyze their
effect.

With regard to the actual data collection process,
there are various approaches. Data collection can be
automated, meaning there is no interference to the
developers, or non-automated, meaning the data is
collected from the developers using forms or interviews.
Automated data collection tends to be more reliable
and can be done without the participants being aware
of what specific activities and factors are being
studied. Reporting forms and interviews can provide
more detailed insights into the process and give a
level of information that is not available in an auto-
mated collection process, e.g., insights into the

kinds of errors committed.

Clearly, the data collected should be driven by
the models and mectrics we are interested in using;
however, it doesn't hurt to add other data which may
give us information about refining and modifying those
models and metrics. All che data collected should be
entered into a data base and validated, as much as
possible, for easy reference and access.

A first step in the validation of forms is a re-
view of the forms as they are handed in; someone con-
nected with the data collection process should ensure
that the appropriate forms have been handed in and
that the appropriate fields have been filled out. The
data should be entered into the data base through a
program that checks the validity of the data format
and rejects data out of the appropriate ranges. For
example, this program can assure that all dates are
legal dates and that system component names and pro-
grammer names are valid for the project by using a
prestored list of component and programmer names.

Ideally, all data in the data base should be re-
viewed by individuals who know what the data should
look like. Clearly, this is expensive and not always
possible. However, several projects should be re-
viewed in detail and the number and types of discrep-
ancies kept so that bounds can be calculated for the
unchecked data. This allows data to be interpreted
with the appropriate care.

Another type of validity check is to examine the
consistency of the data base by comparing redundant
data. For example, if effort data is collected both
at the budget level and at the individual programmer
level, there should be a reasonable correlation between
the two total efforts. Another approach is to use
cluster analysis to look for patterns of behavior that
are indicative of errors in filling out the forms.

For example, if all the change report forms filled out
by a particular programmer fall into ome cluster, it
may imply that there 1is a bias in the data based upon
cthe particular programmer.

Data collection is a serious problem, especially
on large programming projects involving character-
istically different environments. One set of forms
may not be enough to capture what is happening across
all environments. However, if we are to use this data
in models and metrics, we need to know how valid that
data is in each case so as to avoid improper conclusions.

CONCLUSION

Having fit the models to the data, we must analyze
and interpret their results carefully. As stated
earlier, we must understand the environmental parameters
under which the project was developed. We must know
the assumptions, strengths and weaknesses of the models
in order to interpret the results for the particular
project. Our level of confidence in the particular
model or metric should be based upon the level to which
the model or metric has been tested. If the results
support our intuition, we understand what the model
means in our environment; if not, understanding the
model’s shortcomings can yield insights into the model
and our environment.

Quantitative support can be an excellent aid and
risk reducer in making a difficult management or
engineering decision. An organizatiom should build
up its knowledge and expertise in quantitative analysis
of software development. In this way, confidence in

5-12

the various models and metrics can be acquired through
direct experience.

Acknowledgement: The author would like to thank John
Bailey, John Beane, David Hutchens, and Robert Reiter
for their insightful review of this article. *

REFERENCES
(1) Walston, C. and Felix, C., "A Method of Program-

ming Measurement and Estimation," IBM Systems Journal
16, Number 1, 1977.

(2) Freburger, Karl and Basili, Victor, “The Software
Engineering Laboratory: Relationship Equations,"

University of Maryland Technical Report TR-764, May 1979.

(3) Lawrence, M. J. and Jeffery, D. R., "Inter-organi-
zational Comparison of Programming Productivity,"
Department of Information Systems, University of New
South Wales, March 1979.

(4) Boehm, Barry W., Draft of book on Software Engir-
eering Economics, to be published.

(5) Doty Associates, Inc., Software Cost Estimates
Study, Vol. 1, RADC TR 77-220, June 1977.

(6) Wolverton, R., "The Cost of Developing Large Scale
Software," IEEE Transactions on Computers 23, No. 6,
1974,

(7) Aron, J., "Estimating Resources for Large Program-

ming Systems," NATO Conference on Software Engineering
Techniques, Mason Charter, N. Y. 1969.

(8) Carriere, W. M. and Thibodeau, R., "Development
of A Logistics Software Cost Estimating Technique

for Foreign Military Sales,'" General Research Corpora-
tion, Santa Barbara, California, June 1979.

(9) Putnam, L., "A General Empirical Solution to the
Macro Software Sizing and Estimating Problem," IEEE
Transactions on Software Engineering 4, No. 4, 1978.

(10) Norden, Peter V., "Useful Tools for Project
Management,'”" Management of Production, M. K. Starr
(Ed.) Penguin Books, Inc., Baltimore, Md. 1970,
pp. 77-101.

(11) Parr, Francis N., "An Alternative to the Rayleigh
Curve Model for Software Development Effort,'" IEEE
Transactions on Software Engineering, May 1980.

(12) Halstead, M., Elements of Software Science,
Elsevier North-Holland, New York, 1977.

(13) Basili, Victor R. and Zelkowitz, Marvin V.,
"Analyzing Medium Scale Software Developments,' Third
International Conference on Software Engineering,
Atlanta,-Georgia, May 1978.

(14) Musa, John D., "A Theory of Software Reliability
and Its Application," IEEE Transactions on Software
Engineering, Vol. SE1l, No. 3, pp. 312-327.

(15) Belady, L. A. & Lehman, M. M., "A Model of Large
Program Development,” IBM Systems Journal, 1976, 15(3).

(16) Dunsmore, H. E. & Gannon, J. D., "Experimental In-
vestigation of Programming Complexity," Proc. ACM-NBS
Sixteenth Annual Technical Symposjium: Systems and
Software, Washington, D. C., June 1977, pp. 117-125.

(17) -Basili, V. R. and Reiter, R. W. Jr., "An Inves-
tigation of Human Factors in Software Development,"
Computer Magazine, December 1979, pp. 21-38.

(18) Mills, H. D., "Software Development," IEEE
Transactions, Syst. Eng. 2, 4 (1976), pp. 265-273.

(19) Curtis, Bill, "In Search of Software Complexity,"
Proceedings of the Workshop on Quantitative Models

of Software Reliability, Complexity, and Cost, New

York, IEEE 1979.

(20) Mohanty, S. N., "Models and Measurements for
Quality Assessment of Software,” ACM Computing Sur-
veys, 1979, 11, pp. 251-275.

(21) Belady, L. A., "Complexity of Programming: A
Brief Summary," Proceedings of the Workshop on Quanti-
tative Models of Software Reliability, Complexity,

and Cost, New York: IEEE, 1979.

(22) McCabe, T. J., "A Complexity Measure," IEEE
Transactions on Software Engineering, 1976, 2, 308-320.

(23) Basili, V. R. & Reiter, R. W., Jr., '"Selecting
Automated Measures of Software Development,' Proceed-
ings of the Workshop on Quantitative Models of Soft-
ware Reliability, Complexity, and Cost, New York,
IEEE 1979.

(24) Basili, V. R. & Turner, A. J., SIMPL-T, A
Structured Programming Language, Paladin House Publish-
ers, Geneva, Ill. 1976.

(25) Stevens, W. P., Myers, G. J., and Constantine,
L. L., "Structured Design,” IBM Systems Journal,
Vol. 13, No. 2, 1974 pp. 115-139.

(26) Elshoff, "An Analysis of Some Commercial PL/1
Programs," IEEE-TSE June 1976.

(28) Weiss, David, "Evaluating Software Development by
Error Analysis: The Data from the Architecture Re-
search Facility," Journal of Systems and Software,
Vol. 1, No. 1, 1979.

(27) Weiser, Mark, "Program Slices: Theoretical,
Psychological, and Practical Investigations of An
Automatic Program Abstraction Method," Ph.D. Thesis,
University of Michigan 1979.

(29) Endres, A., "Analysis and Causes of Errors in
System Programs,” Proceedings of the Internatiomal
Conference on Software Engineering, pp. 327-336,
April 1975.

(30) Shooman, M. L. "Software Engineering: Reliability
Design and Management,'" Note of Course EE909, Poly-
technic Inst. of New York, Brooklyn, N.Y., 1976.

(31) Littlewood, B., ''How to Measure Software Relia-
bility, and How Not to . . .,".in Proc. 3rd Int. Conf.
Software Engineering, May 1978, pp. 37-45.

(32) Goel, A. L. & Okumoto, "A Markovian Model for
Reliability and Other Performance Measures of Software
Systems," Proceedings of the National Computer Confer-
ence, pp. 769-774 (1979).

*Research was supported in part by NASA Grant NSG5123

.

v i+ o5

.fact, and is therefore

- NSG=5123 fron

o D/O — [
ScoX &

+

USE OF CLUSTER ANALYSIS TO EVALUATE SOFIWARE ENGIREERING METHODOLOGIES*

FEric Chen and

Marvin V. Zelkowitz

Department of Conputer Science
University of Maryland
College Park, Maryland 20742

ABSTRACT

The development of quantitative neasures to
evaluate software development techniques {s
necessary if we are gotng to develop
appropriate mwnethodologies for software
production. Data 4s collected by the
Software Fngineering Laboratory at HNASA
Goddard Space Flight Center on developing
nedlum scale projects of wup ¢to ten man

years effort. In this study, cluster
analysis was used on this collected data
and several measures are proposed. These

measurements are objective, quantifiable,
are the results of the methodology, and
nost {mportant, seem relevant.

Introduction

Along with the development of nunerous
nethodologies to aid in software
development (e. g., structured prugramming,
chief programmers, walkthroughs, code
readinyg, etc.) is a growing awarenessgs of a
need to collect data to be able to quantify
the effects of each new technique. Since
this data {s often collected after the
often unobtainable
and imprecise, at best, it can only be used
to indicate possible trends and not
specific effects of a given technique.

About five years ago, {t was
that data had to be collected as a project
develoned in order to better quantifv a
project's life cycle development. Although
this imposed an additional burden oa the
project, it was believed that the cost was
justified - both to give management more
knowvledge and control over the currvrent
project, and to allow the data to be

realized

* - Research supported 1in part by grant
HASA Goddard Space Flight
Center to the University of Maryland.
Computer time provided 1in part by <the
Conputer Science Center of the University
of Maryland.

CH1627-9;81,0000/0117500.75 © 1981 |[EEE

analyzed later in order to determine the
impact of the new techniques. Most of the
recent work im this area has centered on
what to collect - both in decfding what

data {s needed, and {1 overseeing the
collection process to make sure that the
data {8 collected (both manually and

automatically) accurately.

This paper describes this process and a
further developnent in this data collection
trend. Now that sufficient data exists,
tests are being developed to check the
overall valtdicy and value of the data. For
exaample, if data iss collected on two
different projects, is there any bias {n
the way the two data sets are crecated? Can
we apply the same nmeasures on each and-
compare them? What techniques can be used
on entire collections of data? Can we
classify a project (or anm attribute of the
project) via measures defined on the data?
These and related questions were behind the
current study.

This paper introduces the concepts of
cluster analysis, a well known technique {in
many of the social sciences, into the
software developoent environment
{Anderberg]. It shows that cluster analysis
seenms relevant, and the ©paper develops
several measures that seem applicable in

predicting methodologties in this
environnent. While the measures are based
upon the data collected by the Software

Enginecring Labhoratory, they appear to be
generally applicable in a variety of
settings.

At the NASA Goddard Space Flight Center
in Greenbelt, Maryland, the Software
Engineering Labhoratory was organized in
1976 in conjunction with the University of
Maryland and Computer Sciences Corporation,
The purpose was to study software
development within the NASA environment andg
develop techniques to 1improve software
praduction {Basili - Zelkowitz]. Data are

being collected from certain projects
developed by NASA and are now under study.
At present over 12,000 forms have been

collected (figure 1) on some 30 projects,

Run Analysis Foruw 1334

Component Status Form 2669
Resource Suumary 142
Change Report Form 4047
Conponent Sunnmary Foru 3003
General Project Suumary 62
taintenance Forn 33

Figure 1. Formns collected by carly 1980.

many characteristics of any

ranging in size fruom several thousand to
over 100,000 Fortran source lines. Effort
for each project varies from a few man
months to about 10 man years, and most of
the larger projects take about a year to
complete. The prugrams generally provide
attitude orbit information for wunmanned
spacecraft and operate on an IBH4 360/95
coaputer; however, we view them simply as
large application programs that 1include
software
package, such as user interfaces, graphics,
data base accesses, sclientific coaputations
and other characteristics.

Cluster Analvsis

The information on software production
is collected on a set of forms. Some forus
are filled out on a regular basis. For
exaaple, the Cooponent Status Report,
filled out weekly by each programmer, gives
the conponents of the system worked on that
veek, hours worked, aad phase of
development (e. g. design, code, test).
with ¢this data, a snapshot of the
developing program can be computed, week by
wveck. The Rescurce Suamary gives the total
hours spent by all personnel on the project
for a given week.

Other forms are filled out when needed.
Each cooputer runs results in an entry {in
the Conmputer Run Analysis forn giving
details of the run. Each change or
correction of an error results in a Change
Report Form being filled out giving the
details of the change, its cause, and 1its
effect. With this data, a complete history
of a developing program can be maintained.

As each form 1s entered 1in our . data
base, it becomes a vector of numbers. Thus
each project creates a nuwsber of data sets,
where each data set can be <considered a
nultidimensional vector space with
individual forms being points {n that
space. Obvious questions that arise from
this view are which points are near one
another, does the 1location in the space
have any meaning, and do clusters of such
points have any significance?

In order to answer such questions,
cluster analysis is being applied to this
data. The rest of this section will
describe the assumptions that- ve have nade
and the algorithms that we have wused for
creating clusters. The remaining sections
will descibe the various applications that
we have applied cluster analysis to.

In order to cluster data, the follouinyg
alporitha was used:

(1) Let x and y be two points (forms) in
one data set and let dxy be the “distance”
hetween points x and y. For this study we
usced the similarity between two vectors via
the cosine function [Salton - VWong] as our

distance function since the uvsual
Fucliddean distance nmeasures did not seen
relevant to couponents with different

characteristics. Let xi and yi be the [th
selectors (data values) of vectors (forms)
x and y. Then

i}xiyﬂ
dxy = ——————;——!=====§==
Jﬂxi) t(yi»

dxy will have some value between 0 (if «x

and y are dissimilar) and | ({f x and y are
similar).

(2) Choose sone threshold value B with B
between 0 and l. We assumed that for dxy<B,
x 1s sufficiently dissimilar to y and
therefore x is unrelated to y. If dxy2B8, «x

and y will be <considered to be related.
Later we will describe the various ways of
choosing b.

(3) Compute the connectfivity matrix C
such that

Cxy = true if dxv>8

false 1f dxy<B
Cxy=true means that nodes x and y are near
one another and are considered to be
connected. Since dxy=dyx, C i{s a symmetric
matrix. We have now converted the distance
matrix into a graph-structured connectivity
matrix. Cxv=true means that there {is an
arc from node x to node y in some subgraph
of all nodes. It 1is only necessary to
conpute the total subgraph of connected

.nodes in order to arrive at the cluster.

(4) The connected subgraph can he
computed by couputing the transitive
closure C* of C:

1 2 3 n
C* =« C+C +C + oe0 + ¢C

where addition and multiplication refer to
the logical operations of “or” and “and”,
respectively. In this case, C*xy = true if
and only 1f x and y are 1in the sanme
connected subgraph.

The set of subgraphs forms a disjoint
set of clusters. Every point belongs to
one and only one (possibly singleton)
cluster.

5-15

This algorithm was used to cluster based
upon subsets of the possible selectors for
each vector. Various other criteria (e. g.,
aa additional selector not used in
clustering) were used to see L{f they were
predictors of which cluster a given fora
wvould reside. If so, then this selector (s
a dependent variable, and relating back to
the original goals of the research, would
indicate a relationship between the
methodology (as specified in the criteria)
and the data collected on the forms.

Development Histories

Current software folklore staces that
better systems result if a greater cmphasis
is placed on design. Each such report gives
its own correct formula (e. g. 40X design,
202 code, 40 test), but very lictle
quantitative data exists for verifying such
relationships. Most studies basically state
that “we did it this way aand the results
look good.”™ As an inftial test of cluster
analysis we decided ¢to {nvestigate this
question. This would also be a relatively
easy test on the merits of cluster analysis
itself as a valid measuring tool 1in our
eavironment.

In our data base we collect the number
of hours each programmer spends each week
on each component. A component roughly
translates into a Fortran subroutine . The
stage of developnent worked on (design,
code, test) is also findicated (figure 2).
(The group that we are monitoring at NASA
gets the specifications from another group
and a third group takes over the software
for its operational lifetime. Thus we are
only evaluating the actual developaent
process.) For this reason, the percentages
that we develop later in this paper ditfer
from more “classical”™ 1life cycle aodels,
since we are mostly ignoring requirements,
specification and operational phases.

Due to high computer costs, we limited
ourselves to the 50 largest components (out
of about 400) per project assuming that
most of the effort on a project will be
used to build the largest components. These
will have a greater influence on the
overall methodology than the others. The
largest component needed about 400 hours to
conplete while the smallest of the 50
required about 25 hours.

Assuming a continuous curve, smoothing
techniques were applied. In order to
compare dissimilar components, the time
axis was converted from weeks into deciles
and the effort (vertical) axis was
converted into per cent of total effort.
Thus any two comnponents were coaparable
(figure 3).

Jimns/wnx

VEEK O0ODESIGH CODE TEST
1 33.0 0.0 0.0
2 40.0 0.0 0.0
3 42.0 0.0 0.0
4 89.0 0.0 0.0
5 1.0 0.0 0.0
6 10.0 0.0 0.0 ‘
7 7.0 0.0 0.0
8 10.0 2.0 0.0
9 0.0 2.0 0.0
10 0.0 8.0 6.0
11 4.9 6.0 1.0
12 1.0 2.0 4.0
13 0.0 6.0 4.0
14 0.0 5.0 2.0
15 0.0 0.0 0.0
16 1.0 l.5 7.0
17 0.0 0.0 6.0
18 0.0 3.0 18.0
19 0.9 0.0 40.0
TOTAL 2138.0 35.5 88.0
(a)
Solid-nesidr rhase
Lowed vash-develorment rhase

Shartl rdash-testin: ~hase

P rd
v

u_))
”
A/
) -~

WEEX
(b)

Figure 2. Effort (in bours) to develop a typical
component (by week)

Pigure 3. Smoothed and scaled data of figure 2.

Module Modififability

In order to pick an appropriate B,
various values were tested on five projects
(figure 4). As B varied between 0 and 1, &
of the five tested project had similar
“nunber of clustered components. - Only
project B differed and project E was the
only one of the five that consisted mainly
of reused modules froo similar previous
projects. Thus the number of clusters,
relative to B, may be an invariant that can
be used to measure the “newness” of the
source code. Such a mwmeasure can be
objectively applied to a given project to
determine the degree to which previous
source code has been modified for this

new
project.

Ve used a B that forced the largest
cluster to be under 20 couponents in size.

A smaller B caused many of the clusters to

merge into one large cluster while any
larger B caused c¢luster size to drop
rapidly.
I T T T
t ! ' by
! ; i : g
; ; ! b 3 .
e .
. ! ;
} H :
‘ : i : ;- :
Mool ! ; i -
v 4 H : ;p -
T ! : : ’
v : L 4
: , ; b
- i k2
id e 4 14 .
o - ! ! B
& 1 f
. . ,] : ; C
¥ — -Z *
1 | s
" i b .
s ! ! ! Cd ’
oS ; i : —e
. ! ; i ¥ f“
r i b E
s : : Lo
20 : . SN S g :
' oo
. i ' L N ;
LA A
S H SN
h R B ‘ .
. i P S i
:) - | !
b ! i s ; :
H ¢ [
| ¢ r‘" ‘
| AR ;
: - PR J ; :
. . |
r -
| A A i
X - L." i
| g < i
[} { i
S00 «250 00 ST oS
’ B Thrashols

Figure k. Number of clusters as B varies (for
Frojects A, B, C, D, and E)

Project A Pro ject B
UNCHANCGED CHARCED UNCHANGED CHANGED
6 2 2 5
0 5 1 5
0 2 1 2
0 3 1 1
0 1n 1 1
0 2 0 2
Unchanged: 10 g Z
Unchanged: 10
Project C Project D
UKRCHANGED CIIANGED URCHANGED CHAKGED
3 1 3 0
2 0 2 0
2 0 1 1
1 1 0 2
0 2 0 2
0 2 0 2
Unchanged: 32 0 2
Y 5
Unchanged: 12

Project E

UNCHANGED CHANKGED
3 1
1 15
0 3
[} 3
0 2

Unchanged: 3

Figure 5. Clusters. Each line represents
one cluster of changed and unchanged
components

llodule Correctness

Each component's developnment history was
now reduced to 30 wvalues (3 at each 10
percentile), and these 30 values were used
to cluster the 50 coaponents in each
project. As an independent variable we
considered whether a component had been
modified via a change or error. This would
be a measure of how effective the process
had been. Once unit testing 1s completed, a
component 1is added to the project's
library. If it ever changes after that date
(due to further testing), then a change
report form is submitted. We simply looked
for change report forms that had Dbeen
filled out for the 50 cooponents under
study.

Approximately 80% (about 40) of the 50
components for each project are eventually
altered (figure 5). However, in 4 out of 5

projects, all of the wunaltered components
seem to nmerge into a few clusters that
contain few (if any) altered conponents.
Thus the shape of the development history

curve seems to be an indicator of component
reliability (as measured by the absense of
any changes during testing). The physical
significance of each "error free® cluster
i8 now under study.

-

s g

Projects A B.D L
UNCHADICED CHAZGLD

DOCDC 00O COCOOF mmmm~ivbds
WWWWRIIWIIRIIIIINIIN e = DD —

Figure 6. Clustering &4 projects

The reliability of this conclusion was

enhanced somewhat by merging all four
projects and clustering the 200 resulcting
components. In this case the error free

clusters did seem to merge (figure 6).

Phase effort

Ve were now ready to test one of our
original hypotheses - per cent of effort {n
each phase. Project D had to be eliminated
since the data collection began when this
project was mostly complete with design.

For project A, the cluster with 6 out of

8 unchanged coaponents turned out to have:
Design: 64.1X, Code: 14.44, and Test:
21.4Z, while the five clusters with errors
broke down as follows:
DESICHN CODE TEST
4.5 53.3 42.1
0 78.7 21.2
7.3 st.7 40.8
0 34.1 65.8
0 35.4 64.5
which clearly shows the value of good

design efforts.

The data for projects C and E have similar
resulta:

PROJECT C
URCRANGED CLUSTERS CNANGED CLUSTERS
DES CODE TEST DES CODE TEST
83.6 16.3 0 37.3 40.2 22.3
50.9 U45.0 3.9 21.h S50.0 28.5
8.7 Jek 14.8
100.0% O o
¥ This ehows that wbile ve Lelleve that the data is

accurate, some errors must exist.

PROJECT B

UNCEANGED CLUSTERS CEANGED CLUSTERS

DES CODE TEST DES CODE TEST

97.5 2.4 0 7.3 83.5 9.0+
25.2 67.5 T.2
1.5 &.6 15.8
24,0 75.9 O

further strengthening this result,

For project B, where clustering was not
as effective, the breakdown was as follows.
For clusters with at least one unchanged
component:

DESIGHN CODE TEST
22.0 66.2 1t.3
27.6 52.8 19.3
26.0 19.7 34.2
94.9 5.0 0
and for clusters with changed components:
DESIGN cont TEST
78.9 15.3 5.6
6.2 66.7 25.9
22.4 24.1 53.4

and do not seem to have auch significaace.
Project B, interesting enough, was the one project
that had the hardest time meeting its objectives.

In order to put these naumbers in
perspective, for the LASA enviroament. the

per cent design, code and test effort was-
computed. If the data (s displayed in the
conventional manner using official

milestone dates for each phase (figure 7a),
then design accounts for about one quarter
of the effort, and code for about one half.
lHowever, i{f the actual phase effort {is
conputed independent of the date the task
is performed, then the percentages change
significantly. Design increases about 10X
and coding drops about 5X. Thus in the NASA
environment, simply using wmilestone dates
resulcts ia:

(1) Underestimating the
effort, and '

(2) Overestimating the
efforct.

actual design

actual code

One other aspect of this data can be
seen by conparing the per cent of a task
that was performed after Ifits official
milestone date (or before fn the case of
testing) (figure 7b). Note that a
consistent 23%-25X of the design occurred
during the coding phase and up to half of
the testing occurred before the official
test phase. Since module unit testing was
considered to be part of the development
phase (for figure 7), this seens
significant. In addition, since project 8
was the most behind schedule, the 38% of
design that occurred during coding wmight
indicate a too early design milestone which

+= The cluster wvith obne unchanged and 15 cbanged

components vas considered a changed cluster for this

chart.

vy

caused other problems 1later.
milestone dates for phase
must be viewed with caution.

Thus using
determination

Error Histories

analysis was
change report
Unlike the

A second test of cluster
performed by analyzing the
form, mentioned previously.
previous study on component development

histories, where each data point
represented 30 related attributes (per cent
effort), the change report form consists of
approximately 50 1items that seck to
{dentify a source program error, its cause,
effects, and effort used find and correct
the error. Figure 8 lists the selectors we
used to cluster each form.

It was assumed that each set of
responses on one form indicated a technique

used to debug a system. Therefore the set
of foras could be as a mnmeasure of the
methodology used. It was assumed that
different projects using different

methodologies would have different clusters
of change report forms.

was the
used 1in

In one run the programmer
independent variable (i. e., not
cluster analysis). This was to determine
any bias in the way different programmers
filled out the forms. However, to the .05
significance level, all programmers were
uniformly distributed in all clusters. The
conclusion therefore seems to be that in
our environment, all programmers are doing
esgsentially the same job. This would
indicate that there 1is no real chief
programmer/programmer dichotony in the

tasks we measured. This agrees with the
subjective conclusions about these
projects.,

Dates (time error found, fixed)
Type of error

Time to make and fix change
Causes of error

Tools to find error

Was error related to other errors
Time to locate error

Clerical error
Figure 8.

Sample data used in change report

Methodology Signatures

forms.

The set of clusters for an entire
project define the basic methodology for
developing a software project. We call this
set of clusters its methodology signature.

Two similar projects using similar
techniques should have similar signatures.
That is, they should find each type of

error in approximately the same ratio using
similar techniques for the discovery.

To test this we <clustered the
report forms of several projects,
combined the forms for two of
clustered the merged set. Each cluster 1in
the merged set represented two clusters =
one from each set. We counted the number of
components 1in each cluster and graphed
these (figure 9). Note that large clusters
tended to merge with 1large <clusters and
small clusters with small <clusters. The
merged set of clusters had a correlation
coefficient of .32 with respect to the
clusters that make up the set.

change
then we
then and

This leads to an interesting methodology
measure. First cluster two of the sets of
change forms and then look at the clusters
formed by clustering the combined set of
I1f they have similar patterns and
similar clusters merge together, then they
indicate similar development structure and

BY PHASE

2.7 49.6 2
2.2 68.2 9.3
7.4 61.6 11.0
0.2 52.3 17.4

34.1 45.6 20.2
36.8 48.7 14.5
42.0 50.4 7.6

(a) Per cent design, code and test by
milestone date and actual task

XZDESIGN DURING'ZCODE DURINGJZTEST DURING

CODE TEST DESIGN & CODE
A 23 27 49
B 38 4 67
c 25 8 56
E 25 21 24

(b) Per cent effort during another phase

(Data collection began after the design
phase of project D, so it is omitted here.)
Figure 7. date
and phase

Project task breakdown by

: ‘.
; !
2 : i
;
|
: .
10+ - :
|
eea !
b} ! —
™ Y !
-t i
) | L
¢ s 13 1=

Figure 9. FNumber of cowmponents from project A
{horizontal) and project B (vertical) in joint
clusters.

o v Dol MBI T 0T

L e ctm———————— s o e ———

B S am i S

probably similar wmethodologies. It not,
then further study {s indicated. Either the
methodologies differ, or the <class of
errors found differ for some reason.

An Interesting 1{idea (although only
speculation at this ctime) would be to
generate a set of henchmark projects each

representiang a
unknown project

different methodology. An

could then be clustered
with each, and the one for which the merged
sraph penerates the highest correlation
would represent the unknown wethodology. [f
this turns out to he true, then this
technique would represent a quantitative
method to measure a software methodology.

n u S

applied on
Engineeriag

Cluster analysis has been
data collected by the Software

Lahoratory on several projects. The
prelininary results should that the
technique {s effective in deternining
characteristics about the projects and the
underlying methodology used in thelir
development. Several measures seen

interesting and are now under study:

(1) The threshold value 1{n determining
connectedness of the underlyiny graph
structure (called B in this report) scems
to have significance and seems to be a

measure of the "reusability” of the
existing source code in a new project.

(2) The development history is an
indication of probable progranm

reliabiltey.

(3) The methodology signature
from analyzing the <change —report
looks like an effective measure of
techiniques used in developing projects.

(4) lore complex measures of distance
hetwaen polints are being considered. The
current one has the virtue of being easy to
program but has the disadvaantage that long
threadlike "snakes” of points will be in
the same cluster, vather than some central
“centruoid” with only points near than
centroid being in the cluster.

developed
forms
the

The entire software developnent
nethodology area is often filled with vague

statements, folklore, and lack of
quantifiable data. It is hoped that
techniques such as described here can be
used to give this important topic a more

quantifiable, exact and scientific

footing.

Acknowledpzement

uld 1like to acknowledye the
on of Mr. VWarren MMiller in
many of <the values that are
rerein.

References

[Anderberg] Anderberg 1. A., Cluster
Analysis for applicarions, Acadenic ~Press,
New York. 1973.

{Basili - Zelkowitz] Basili V and n
Zelkowitz, Resource estimation for mediun
scale projects, Third [nternaclonal
Conference on Software Engineering, Atlanta
Georgia, 1974.

{Salton = Uong] Salten G and A fWong,
Generation and search of clustered files,
ACM Transactions on Database Svstems J. Ko.

T, 378, pp. 32(-3h6.

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in
this bibliography are organized into two groups. The first
group is composed of documents issued by the Software Engi-
neering Laboratory (SEL) during its research and development.
activities. The second group includes materials that were
published elsewhere but pertain to SEL activities.

SEL-Originated Documents

Software Engineering Laboratory, SEL-76-001, Proceedings
From the First Summer Software Engineering Workshop,
August 1976

SEL-77-001, The Software Engineering Laboratory,
V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software
Engineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu,
D. S. Wilson, and R. Beard, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages
Study, P. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP)
Design and Module Descriptions, E. M. O'Neill,
S. R. Waligora, and C. E. Goorevich, January 1978

+SEL-78-002, FORTRAN Static Source Code Analyzer (SAP)
User's Guide, E. M. O'Neill, S. R. Waligora, and
C. E. Goorevich, February 1978

SEL-78-102, FORTRAN Static Source Code Analyzer Program
(SAP) User's Guide (Revision l), W. J. Decker and
W. A. Taylor, May 1982 (preliminary)

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)
PDP-11/70 User's,Guide, D. S. Wilson, B. Chu, and G. Page,
September 1978

1"1‘1'115 document superseded by revised document.

B-1

SEL-78-005, Proceedings From the Third Summer Software
Engineering Workshop, September 1978

SEL-78-006, GSFC Software Engineering Research Require-
ments Analysis Study, P. A.- Scheffer, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,
M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Rela-
tionship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System
Description and User's Guide, C. E. Goorevich,
S. R. Waligora, and A. L. Green, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon
Program Design Lanquage (PDL) in the Goddard Space Flight
Center (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and F. E. McGarry, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software
Engineering Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for
Code 580 Confiquration Analysis Tool (CAT), F. K. Banks,
C. E. Goorevich, and A. L. Green, February 1980

SEL-80~-002, Multi-Level Expression Design Language-
Requirement Level (MEDL-R) System Evaluation, W. J. Decker,
C. E. Goorevich, and A. L. Green, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support
Software System (MMS/GSSS) State-of-the-Art Computer
Systems/Compatibility Study, T. Welden, M. McClellan,

P. Liebertz, et al., May 1980

SEL-80-004, System Description and User's Guide for Code 580
Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software
Engineering Workshop, November 1980

B-2

SEL-80-007, An Appraisal of Selected Cost/Resource Estimation
Models for Software Systems, J. F. Cook and F. E. McGarry,
December 1980

SEL-81-001, Guide to Data Collection, V. E. Church,
D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-002, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide, D. C. Wyckoff, G. Page,
F. E. McGarry, et al., September 1981

SEL-81-003, Software Engineering Laboratory (SEL) Data Base
Maintenance System (DBAM) User's Guide and System De-
scription, D. N. Card, D. C. Wyckoff, G. Page, et al.,
September 1981

+SEL-81_-004, The Software Engineering Laboratory,
D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software Engineering Laboratory, D. N. Card,
F. E. McGarry, G. Page, et al., February 1982

+SEL-81-005, Standard Approach to Software Development,
V. E. Church, F. E. McGarry, G. Page, et al., September 1981

SEL-81-105, Recommended Approach to Software Development,
S. Eslinger, F. E. McGarry, V. E. Church, et al., May 1982

SEL-81-006, Software Engineering Laboratory (SEL) Document
Library (DOCLIB) System Description and User's Guide,
W. Taylor and W. J. Decker, December 1981

TxSEI.-Bl--OO?, Software Engineering Laboratory (SEL) Com-
pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,
et al., February 1981

SEL-81-107, Software Engineering Laboratory (SEL) Compendium
of Tools, W. J. Decker, E. J. Smith, W. A. Taylor, et al.,
February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)
User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer
Workbench Phase 1 Evaluation, W. J. Decker, A. L. Green, and
F. E. McGarry, March 1981

TThis document superseded by revised document.

B-3

SEL-81-010, Performance and Evaluation of an Independent
Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-011, Evaluating Software Development by Analysis of
Change Data, D. M. Weiss, November 1981

SEL-81-012, Software Engineering Laboratory, G. O. Picasso,
December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-
neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering
Data in the Software Engineering Laboratory (SEL),
A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation and Application of Software Develop-
ment Measures, D. N. Card, G. Page, and F. E. McGarry, July
1982

SEL-82-002, FORTRAN Static Source Code Analyzer Program
(SAP) System Description, W. Taylor and W. Decker, August
1982 _

SEL-82-003, Software Engineering Laboratory (SEL) Data Base
Reporting Software User's Guide and System Description,
P. Lo and S. Eslinger, September 1982

SEL-82-004, Collected Software Engineering Papers:
Volume 1, July 1982

SEL-Related Literature

Andersoﬁ, L., "SEL Library Software User's Guide," Computer
Sciences-Technicolor Associates, Technical Memorandum, June
1980

+TBailey, J. W., and V. R. Basili, "A Meta-Model for Soft-
ware Development Resource Expenditures," Proceedings of
the Fifth International Conference on Software Engineering.
New York: Computer Societies Press, 1981

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

1'1"1‘.‘1'115 article also appears in SEL-82-004, Collected Software

Engineering Papers: Volume 1, July 1982

B-4

++Bas111, V. R., "The Software Engineering Laboratory:
Objectives," Proceedings of the Fifteenth Annual Confer-
ence on Computer Personnel Research, August 1977

*+Basili, V. R., "Models and Metrics for Software Managément
and Engineering," ASME Advances in Computer Technology,
January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming
Measurement and Estimation,"™ University of Maryland,
Technical Memorandum, October 1980

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering. New York: Computer Societies
Press, 1980 (also designated SEL-80-008)

**Basili, V. R., and J. Beane, "Can the Parr Curve Help with
Manpower Distribution and Resource Estimation Problems?",
Journal of Systems and Software, February 1981, vol. 2,

no. 1

ffBasili, V. R., and K. PFreburger, "Programming Measurement
and Estimation in the Software Engineering Laboratory,"
Journal of Systems and Software, February 1981, vol. 2,

no. 1

f*Basili, V. R., and T. Phillips, "Evaluating and Comparing
Software Metrics in the Software Engineering Laboratory,"
Proceedings of the ACM SIGMETRICS Symposium/Workshop:
Quality Metrics, March 1981

Basili, V. R., and T. Phillips, "Validating Metrics on Proj-
ect Data," University of Maryland, Technical Memorandum,
December 1981

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-
ures for Software Development,” Proceedings of the Workshop
on Quantitative Software Models for Reliability, Complexity
and Cost, October 1979

Basili, V. R., and M. V. Zelkowitz, "Designing a Software
Measurement Experiment," Proceedings of the Software Life
Cycle Management Workshop, September 1977

++This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982

B-5

f+Basili, V. R., and M. V. Zelkowitz, "Operation of the Soft-
ware Engineering Laboratory," Proceedings of the Second
Software Life Cycle Management Workshop, August 1978

*+Basili, V. R., and M. V. Zelkowitz, "Measuring Software
Development Characteristics in the Local Environment,"
Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale
Software Development," Proceedings of the Third Interna-
tional Conference on Software Engineering. New York:
Computer Societies Press, 1978

Card, D. N., "Early Estimation of Resource Expenditures and
Program Size," Computer Sciences Corporation, Technical
Memorandum, June 1982

1""Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis to
Evaluate Software Engineering Methodologies," Proceedings

of the Fifth International Conference on Software Engineer-
ing. New York: Computer Societlies Press, 198l

Church, V. E., "User's Guides for SEL PDP-11/70 Programs,"

Computer Sciences Corporation, Technical Memorandum, March
1980

Freburger, K., "A Model of the Software Life Cycle" (paper
prepared for the University of Maryland, December 1978)

Higher Order Software, Inc., TR-9, A Demonstration of AXES
for NAVPAK, M. Hamilton and S. 2eldin, September 1977 (also
designated SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-
pared for the University of Maryland, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"
(paper prepared for the University of Maryland, December
1978)

Miller, A. M., "A Survey of Several Reliability Models"
(paper prepared for the University of Maryland, December
1978)

++This article also appears in SEL-82-004, Collected Software

Engineering Papers: Volume 1, July 1982

National Aeronautics and Space Administration (NASA), NASA
Software Research Technology Workshop (proceedings), March
1980

Page, G., "Software Engineering Course Evaluation,"” Computer
Sciences Corporation, Technical Memorandum, December 1977

‘Parr, F., and D. Weiss, "Concepts Used in the Change Report
Form," NASA, Goddard Space Flight Center, Technical Memoran-
dum, May 1978

Perricone, B. T., "Relationships Between Computer Software
and Associated Errors: Empirical Investigation" (paper pre-
pared for the University of Maryland, December 1981)

Reiter, R. W., "The Nature, Organization, Measurement, and
Management of Software Complexity" (paper prepared for the
University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher
Order Languages Study: Addendum," Martin Marietta Corpora-
tion, Technical Memorandum, September 1977

Turner, C., G. Caron, and G. Brement, "NASA/SEL Data Compen-
dium," Data and Analysis Center for Software, Special Publi-
cation, April 1981

Turner, C., and G. Caron, "A Comparison of RADC and NASA/SEL
Software Development Data,"™ Data and Analysis Center for
Software, Special Publication, May 1981

Weiss, D. M., "Error and Change Analysis," Naval Research
Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"”
Naval Research Laboratory, Technical Memorandum, July 1979

++2elkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects,"” Proceedings of the Twelfth Conference on
the Interface of Statistics and Computer Science. New York:

| Computer Societies Press, 1979

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of
a Software Measurement Facility," Proceedings of the Soft-
ware Life Cycle Management Workshop, September 1977

1""This article also appears in SEL-82-004, Collected Software
Engineering Papers: Volume 1, July 1982

B-7

